Skip to main content
Log in

Early milestones in the understanding of echolocation in bats

  • Review - History
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Almost 80 years ago, Griffin and Galambos discovered the phenomenon of echolocation in bats. Since then, the field has grown exponentially as new generations of investigators have joined the chase and technological advances have revolutionized working with ultrasound in the laboratory and in the field. Today our understanding of the diversity of behavioral and neural adaptations for echolocation constitutes one of the paramount triumphs of neuroethology. At the invitation of the editor in chief, I here review some of the important milestones in the discovery and early understanding of echolocation in bats through about the mid-1980s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

with permission of the Acoustical Society of America) (Photos by Brock Fenton)

Fig. 3

(modified from Schnitzler and Henson 1980, after Webster and Durlach 1963)

Fig. 4
Fig. 5

(modified from Schnitzler 1968). (Photo: Brock Fenton)

Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • AirapetianzESh, KonstantinovAI (1970) Echolocation in Animals. Nauka, Leningrad. English translation. Israeli Program of Scientific Translations, Jerusalem

    Google Scholar 

  • AirapetianzESh, KonstantinovAI (1974) Echolocation in Nature. Nauka, Leningrad. English translation Joint Publications Research Service No 63328,1000 North Glebe Road, Arlington VA 22201

  • Altes RA (1981) Echo phase perception in bat sonar? J Acoust Soc Am69:505–508

    Article  Google Scholar 

  • Bruns V (1976) Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrum-equinum. J Comp Physiol A 106:77–97

    Article  Google Scholar 

  • Cahlander DA, McCue JJG, Webster FA (1964) The determination of distance by echolocating bats. Nature 201:544–546

    Article  PubMed  CAS  Google Scholar 

  • Dijkgraaf S (1946) Die Sinneswelt der Fledermäuse. Experientia 2:438–448

    Article  PubMed  CAS  Google Scholar 

  • Feng AS, Simmons JA, Kick SA (1978) Echo detection and target-ranging neurons in the auditory system of the bat, Eptesicus fuscus. Science 202:645–648

    Article  PubMed  CAS  Google Scholar 

  • Fuzessery ZM, Pollak GD (1984) Neural mechanisms of sound localization in an echolocating bat.Science225:725–728

    Article  PubMed  CAS  Google Scholar 

  • Fuzessery ZM, Pollak GD (1985) Determinants of sound localization selectivity in bat inferior colliculus: a combined dichotic and free-field stimulation study. J Neurophysiol 54:757–781

    Article  PubMed  CAS  Google Scholar 

  • Galambos R (1942) Cochlear potentials elicited from bats by supersonic sounds. J Acoust Soc Am 14:41–49

    Article  Google Scholar 

  • Galambos R, Griffin DR (1942) Obstacle avoidance by flying bats: the cries of bats. J Exp Zool80:475–490

    Google Scholar 

  • Griffin DR (1944) Echolocation by blind men, bats and radar. Science 100:589–590

    Article  PubMed  CAS  Google Scholar 

  • Griffin DR (1947) Supersonic cries of bats. Nature 158:46–48

    Article  Google Scholar 

  • Griffin DR (1950) Measurements of the ultrasonic cries of bats. J Acoust Soc Am 22:247–255

    Article  Google Scholar 

  • Griffin DR (1953a) Bat sounds under natural conditions, with evidence for echolocation of insect prey. J Exp Zool123:435–466

    Article  Google Scholar 

  • Griffin DR (1953b) Acoustic orientation in the oil bird. Steatornis. Proc Nat Acad Sci 39:884–893

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Griffin DR (1958) Listening in the dark. Yale Univ Press, New Haven

    Google Scholar 

  • Griffin DR (1980) Early history of research on echolocation. In: BusnelR-G, FishJF (eds) Animal sonar systems. Plenum Press, NY

    Google Scholar 

  • Griffin DR (1983) Scientific recollections. In: DewsburyDA (ed) Autobiographies in animal behavior. Bucknell Univ Press

  • Griffin DR, Galambos R (1941) The sensory basis of obstacle avoidance by flying bats. J Exp Zool 86:481–506

    Article  Google Scholar 

  • Griffin DR, Novick A (1955) Acoustical orientation of neotropical bats. J Exp Zool 130:251–300

    Article  Google Scholar 

  • Griffin DR, Webster FA, Michael CR (1960) The echolocation of flying insects by bats. Anim Behav8:141–154

    Article  Google Scholar 

  • Griffin DR, Dunning DE, Cahlander DA, Webster FA (1962) Correlated orientation sounds and ear movements of horseshoe bats. Nature 196:1185–1186

    Article  Google Scholar 

  • Griffin DR, McCue JJG, Grinnell AD (1963) The resistance of bats to jamming. J Exp Zool152:229–250

    Article  Google Scholar 

  • Grinnell AD (1963) The neurophysiology of audition in bats. J Physiol 167:38–127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grinnell AD (1967) Mechanisms of overcoming interference in echolocating animals. In: BusnelR-G (ed) Animal sonar systems, vol 1. Lab PhysiolAcoust, Jouy-en-Josas 78, France, pp 451–480

  • Grinnell AD (1970) Comparative auditory neurophysiology of neotropical bats employing different echolocation signals. Zvergl Physiol76:41–81

    Article  Google Scholar 

  • Grinnell AD, Griffin DR (1958) The sensitivity of echolocation in bats. Biol Bull 114:10–22

    Article  Google Scholar 

  • Grinnell AD, Grinnell VS (1965) Neural correlates of vertical localization by echolocating bats. J Physiol181:830–851

    Article  Google Scholar 

  • Grinnell AD, Hagiwara S (1972) Adaptations of the auditory system for echolocation: studies in New Guinea bats. Z Vergl Physiol 76:41–81

    Article  Google Scholar 

  • Grinnell AD, McCue JJG (1963) Neurophysiological investigations of the bat, Myotis lucifugus, stimulated by frequency modulated acoustical pulse. Nature198:453–455

    Article  Google Scholar 

  • Grinnell AD, Schnitzler H-U (1977) Directional sensitivity of echolocation in the horseshoe bat, Rhinolophus ferrumequinum. II. Behavioral directionality of hearing. J Comp Physiol A116:63–76

    Article  Google Scholar 

  • Grothe B, Pecka M, McAlpine D (2010) Mechanisms of sound localization in mammals. Physiol Rev 90:983–1012

    Article  PubMed  CAS  Google Scholar 

  • Gustafson Y, Schnitzler H-U (1979) Echolocation and obstacle avoidance in the hipposiderid bat Aselliatridens. J Comp Physiol 131:161–167

    Article  Google Scholar 

  • Habersetzer J, Vogler B (1983) Discrimination of surface-structured targets by the echolocating bat, Myotis myotis, during flight. J Comp Physiol A 152:275–282

    Article  Google Scholar 

  • Hagiwara S, Grinnell AD (1972) Studies of auditory neurophysiology in non-echolocating bats and adaptations for echolocation in one genus. Rousettus Zvergl Physiol 76:82–96

    Article  Google Scholar 

  • Hahn WL (1908) Some habits and sensory adaptations of cave-inhabiting bats. Biol Bull 15:135–193

    Article  Google Scholar 

  • Harnischfeger G, Neuweiler G, Schlegel P (1985) Interaural time and intensity coding in the superior olivary nucleus and inferior colliculus of the echolocating bat, Molossus ater. J Neurophysiol 53:89–109

    Article  PubMed  CAS  Google Scholar 

  • Hartridge H (1920) The avoidance of objects by bats in their flight. J Physiol 54:54–57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hartridge H (1945) Acoustical control in the flight of bats. Nature 156:490–494

    Article  Google Scholar 

  • Helstrom CW (1960) Statistical theory of signal detection. Pergamon Press, NY

    Google Scholar 

  • Henson OW Jr (1965) The activity and function of the middle ear muscles in echolocating bats. J Physiol180:871–887

    Article  PubMed  PubMed Central  Google Scholar 

  • Henson MM (1978) The basilar membrane of the bat Pteronotus p. parnellii. Am J Anat 153:143–158

    Article  PubMed  CAS  Google Scholar 

  • Henson OW Jr, Pollak GD, Kobler JB, Henson MM, Goldman LJ (1982) Cochlear microphonics potentials elicited by biosonar signals in flying bats, Pteronotus p. parnellii. Hearing Res 7:127–147

    Article  Google Scholar 

  • Kick SA, Simmons JA (1984) Automatic gain control in the bat’s sonar receiver and the neuroethology of echolocation. J Neurosci 4:2725–2737

    Article  PubMed  CAS  Google Scholar 

  • Konstantinov AI, Makarov AK, Sokolov BV, Sanotskaya NN (1976) Physiological mechanism in theuse oft he Doppler effect in echolocation by the bat Rhinolophus ferrumequinum. J Evol Biochem Physiol 12:413–418

    Google Scholar 

  • Kulzer E (1956) Flughunde erzeugen Orientierungslaute durch Zungenschlag. Naturwissenschaften 43:117–118

    Article  Google Scholar 

  • Lawrence BD, Simmons JA (1982) Echolocation in bats: the external ear and perception of the vertical position of targets. Science218: 481–483

    Article  PubMed  CAS  Google Scholar 

  • MacArthur CWP (2000) Louis Jurine’s papers on the hearing of bats and on their parasites: a retrospective with new information. Le Rhinolophe 14:1–35

    Google Scholar 

  • Maxim H (1912) The sixth sense of bats. Sir Hiram Maxim’s contention. The possible prevention of sea collisions. Sci Am Suppl 7:148–150

    Article  Google Scholar 

  • Menne D, Hackbarth H (1986) Accuracy of distance measurement in the bat Eptesicus fuscus: theoretical aspects and computer simulations. J Acoust Soc Am 79:386–397

    Article  PubMed  CAS  Google Scholar 

  • Møhl B (1986) Detection by a pippestrelle bat. Acoustica 61:75–82

    Google Scholar 

  • MöhresFP (1953) Über die Ultraschallorientierung der Hufeisennasen (Chiroptera-Rhinolophidae). Z Vergl Physiol34:547–588

    Article  Google Scholar 

  • Möhres FP, Kulzer E (1956) Über die Orientierung der Flughunde (Chiroptera-Pteropodidae). Z Vergl Physiol38:1–29

    Article  Google Scholar 

  • Möller J, Neuweiler G, Zöller H (1978) Response characteristics of inferior colliculus neurons of the awake CF-FM bat Rhinolophus ferrumequinum. I. Single-tone stimulation. J Comp Physiol A125:217–225

    Article  Google Scholar 

  • Moss CF, Schnitzler H-U (1989) Accuracy of target ranging in echolocating bats: acoustic information processing. J Comp Physiol A 165:383–393

    Article  Google Scholar 

  • Neuweiler G (1970) Neurophysiologische Untersuchungen zum Echoortungssystem der Großen Hufeisennase, Rhinolophusferrumequinum. J Comp Physiol67: 273–306

    Google Scholar 

  • Neuweiler G (1980) Auditory processing of echoes: peripheral processing. In: Busnel R-G, Fish J (eds) Animal sonar systems. NATO Scientific Affairs Division, Plenum Press, NY, pp 519–548

    Chapter  Google Scholar 

  • Neuweiler G, Vater M (1977) Response patterns to pure tones of cochlear nucleus units in the CF-FM bat Rhinolophus ferrumequinum. J Comp Physiol A 115:119–134

    Article  Google Scholar 

  • Novick A (1955) Laryngeal muscles of the bat and production of ultrasonic sounds. Am J Physiol 183:648

    Google Scholar 

  • Novick A (1958a) Orientation in paleotropical bats: I. Microchiroptera. J Exp Zool 138:81–154

    Article  PubMed  CAS  Google Scholar 

  • Novick A (1958b) Orientation in paleotropical bats II. Megachiroptera. J Exp Zool137:443–462

    Article  PubMed  CAS  Google Scholar 

  • Pierce GW, Griffin DR (1938) Experimental determination of supersonic notes emitted by bats. J Mammal 19:454–455

    Article  Google Scholar 

  • Pollak GD (1980) Organizational and encoding features of single neurons in the inferior colliculus of bats. In: Busnel RG, Fish JF (eds) Animal sonar systems. Plenum Press, NY, pp 549–587

    Chapter  Google Scholar 

  • Pollak GD (1988) Time is traded for intensity in the bat’s auditory system. Hearing Res 36:107–124

    Article  CAS  Google Scholar 

  • Pollak GD, Casseday JH (1989) The neural basis of echolocation in bats. Springer-Verlag, New York

    Book  Google Scholar 

  • Pollak GD, Henson OW Jr, Novick A (1972) Cochlear microphonic audiograms in the pure tone bat. Chilonycteris parnellii parnellii. Science176:66–68

    Article  PubMed  CAS  Google Scholar 

  • Pollak GD, Henson OW Jr, Johnson R (1979) Multiple specializations in the peripheral auditory system of the CF-FM bat. Pteronotus parnellii.J Comp PhysiolA131:255–266

    Article  Google Scholar 

  • Pollak GD, Marsh DS, Bodenhamer RD, Souther A (1977) Characteristics of phasic on neurons in inferior colliculus of unanesthetized bats with observations relating to mechanisms for echoranging. J Neurophysiol 40:926–942

    Article  PubMed  CAS  Google Scholar 

  • Pollak GD, Wenstrup JJ, Fuzessery ZM (1986) Auditory processing in the mustache bat’s inferior colliculus. Trends Neurosci 9:556–561

    Article  Google Scholar 

  • Pye JD (1980) Echolocation signals and echoes in air. In: Busnel R-G, Fish J (eds) Animal sonar systems. NATO Scientific Affairs Division, Plenum Press, NY, pp 309–353

    Chapter  Google Scholar 

  • Roverud RC (1988) A time window for distance information processing in the bats Noctilio albiventris and Rhinolopusrouxi. In: Nachtigall PE, Moore PWB (eds) Animal sonar: processes and performance. Plenum Press, NY, pp 513–517

    Chapter  Google Scholar 

  • Roverud RC (1993) Neural computations for sound pattern recognition: evidence for summation of an array of frequency filters in an echolocating bat. J Neurosci 13:2306–2312

    Article  PubMed  CAS  Google Scholar 

  • Roverud RC, Grinnell AD (1985a) Discrimination performance and echolocation signal integration requirements for target detection and distance determination in the CF/FM bat Noctilio albiventris. J Comp Physiol A 156:447–456

    Article  Google Scholar 

  • Roverud RC, Grinnell AD (1985b) Echolocation sound features processed to provide distance information in the CF/FM bat, Noctilio albiventris: evidence for a gated time window using both CF and FM components. J Comp Physiol A 156:457–469

    Article  Google Scholar 

  • Schmidt S (1988) Discrimination of target surface structure in the echolocating bat. In: Nachtigall PE, Moore PWB (ed) Animal sonar: processes and performance. Plenum Press, NY, pp 507–511

    Chapter  Google Scholar 

  • Schnitzler H-U (1967) Discrimination of thin wires by flying horseshoe bats (Rhinolophidae). In: BusnelRG (ed) Animal sonar systems, vol 1. Laboratoire de PhysiologieAcoustique, Jouy-en-Josas, France, pp 69–87

    Google Scholar 

  • Schnitzler H-U (1968) Die Ultraschall-Ortungslaute der Hufeisennasen Fledermäuse in verschiedenen Orientierungssituationen. Z Vergl Physiol 57:376–408

    Article  Google Scholar 

  • Schnitzler H-U (1970) Echoortung bei der Fledermaus Chilonycteris rubiginosa. Z Vergl Physiol 68:25–39

    Article  Google Scholar 

  • Schnitzler H-U (1973) Control of Doppler Shift compensation in the Greater Horseshoe Bat, Rhinolophus ferrumequinum. J Comp Physiol 82:79–92

    Article  Google Scholar 

  • Schnitzler H-U, FliegerE (1983) Detection of oscillating target movements by echolocation in the greater horseshoe bat, Rhinolophus ferrumequinum. J Comp Physiol 153:385–391

    Article  Google Scholar 

  • Schnitzler H-U, GrinnellAD (1977) Directional sensitivity of echolocation in the horseshoe bat, Rhinolophus ferrumequinum I. Directionality of sound emission. J Comp Physiol 116:51–61

    Article  Google Scholar 

  • Schnitzler H-U, Henson OW Jr (1980) Performance of airborne animal sonar systems: I. Microchiroptera. In: Busnel R-G, Fish J (eds) Animal sonar systems. NATO Scientific Affairs Division, Plenum Press, NY, pp 109–181

    Chapter  Google Scholar 

  • Schuller G, Pollak GD (1979) Disproportionate frequency representation in the inferior colliculus of horseshoe bats: Evidence for an “acoustic fovea”. J Comp Physiol 132:47–54

    Article  Google Scholar 

  • Schuller G, Beutner K, Schnitzler H-U (1974) Response to frequency shifted artificial echoes in the bat Rhinolophus ferrumequinum. J Comp Physiol 89:275–286

    Article  Google Scholar 

  • Simmons JA (1973) The resolution of target range by echolocating bats. J Acoust Soc Am 54:157–173

    Article  PubMed  CAS  Google Scholar 

  • Simmons JA (1974) Response of the Doppler echolocation system in the bat. Rhinolophus ferrumequinum. J Acoust Soc Am56:672–682

    Article  PubMed  CAS  Google Scholar 

  • Simmons JA (1979) Perception of echo phase in bat sonar. Science 204:1336–1338

    Article  PubMed  CAS  Google Scholar 

  • Simmons JA (1980) The processing of sonar echoes by bats. In: Busnel R-G, Fish J (eds) Animal sonar systems. NATO Scientific Affairs Division, Plenum Press, NY, p 695711

    Google Scholar 

  • Simmons JA, Lavender WA (1976) Representation of target range in the sonar receivers of echolocating bats. J Acoust Soc Am60:85

    Article  Google Scholar 

  • Simmons JA, Stein RA (1980) Acoustic imaging in bat sonar: echolocation signals and the evolution of echolocation. J Comp Physiol 135:61–84

    Article  Google Scholar 

  • Simmons JA, Kick SA, Lawrence BD, Hale C, Escudie B (1983) Acuity of horizontal angle discrimination by the echolocating bat Eptesicus fuscus. J Comp Physiol 153:321–330

    Article  Google Scholar 

  • Sug aN, O’Neill WE (1979) Neural axis representing target range in the auditory cortex of the mustached bat. Science 206:351–353

    Article  CAS  Google Scholar 

  • Suga N (1964a) Recovery cycles and responses to frequency modulated tone pulses in auditory neurons of echolocating bats. J Physiol 175:50–80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suga N (1964b) Single unit activity in the cochlear nucleus and inferior colliculus of echolocating bats. J Physiol 172:449–474

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suga N (1970) Echo-ranging neurons in the inferior colliculus of bats. Science 170:449–452

    Article  PubMed  CAS  Google Scholar 

  • Suga N (1977) Amplitude-spectrum representation in the Doppler-shifted-CF processing area of the auditory cortex of the mustached bat. Science 196:64–67

    Article  PubMed  CAS  Google Scholar 

  • Suga N, Horikawa J (1986) Multiple time axes for representation of echo delays in the auditory cortex of the mustached bat. J Neurophysiol 55:775–805

    Article  Google Scholar 

  • Suga N, Jen PH-S (1976) Specialization of the auditory system for reception and processing of species-specific sounds. Fed Proc 37:2342–2354

    Google Scholar 

  • Suga N, Jen PH-S (1977) Further studies on the peripheral auditory system of “CF-FM” bats specialized for the fine frequency analysis of Doppler-shifted echoes. J Exp Biol 69:207–232

    PubMed  CAS  Google Scholar 

  • Suga N, Schlegel P (1972) Neural attenuation of responses to emitted sounds in echolocating bats. Science 177:82–84

    Article  PubMed  CAS  Google Scholar 

  • Suga N, Simmons JA, Jen PH-S (1975) Peripheral specialization for the fine frequency analysis of Doppler-shifted echoes in “CF-FM” bat Pteronotus parnellii. J Exp Biol 63:161–192

    PubMed  CAS  Google Scholar 

  • Suga N, O’Neill WE, Kujirai K, Manabe T (1983) Specificity of combination-sensitive neurons for processing of complex biosonar signals in auditory cortex of the mustached bat. J Neurophys 49:1573–1626

    Article  CAS  Google Scholar 

  • Sullivan WE III (1982) Neural representation of target distance in the auditory cortex of the echolocating bat Myotis lucifugus. J Neurophys 48:1011–1031

    Article  Google Scholar 

  • Sum YW, Menne D (1988) Discrimination of fluttering targets by the FM-bat Pipistrellus stenopterus. J Comp Physiol A 163:349–354

    Article  Google Scholar 

  • Teeling EC, Jones G, Rossiter SJ (2016) Phylogeny, genes and hearing: implications for the evolution of echolocation in bats. In: FentonMB, GrinnellAD, PopperAN, FayRF (eds) Springer handbook of auditory research, vol 54. Springer Science, NY, pp 25–54

    Google Scholar 

  • Webster FA(1963) Active energy radiating systems: the bat and ultrasonic principles II; acoustical control of airborne interception by bats. Proc Int Congress on Technology and Blindness pp 49–135

  • Webster FA (1967) Interception performance of echolocating bats in the presence of interference. In: BusnelRG (ed) Animalsonar systems. vol 1, Laboratoire de PhysiologieAcoustique, Jouy-en-Josas pp 673–713

  • Webster FA, Brazier OG (1965) Experimental studies on target detection, evaluation, and interception by echolocating bats. Technical Report No. AMRL-R-65-172, Aerospace Medical Division, U.S. Air Force Systems Command, Wright-Patterson Air Force Base, Ohio

  • Webster FA, Brazier OG (1968) Experimental studies on echolocating mechanisms in bats. In: Report No. AMRL-TR-67-192. Aerospace Medical Research Laboratories, Air Force Systems Command. Wright-Patterson Air Force Base, Ohio

    Google Scholar 

  • Webster FA, Griffin DR (1962) The role of the flight membranes in insect capture by bats. Anim Behav 10:332–340

    Article  Google Scholar 

  • Wenstrup JJ, Fuzessery ZM, Pollak GD (1986) Binaural response organization within a frequency-band representation in the inferior colliculus: implications for sound localization. J Neurosci 6:962–973

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan D. Grinnell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grinnell, A.D. Early milestones in the understanding of echolocation in bats. J Comp Physiol A 204, 519–536 (2018). https://doi.org/10.1007/s00359-018-1263-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-018-1263-3

Keywords

Navigation