Skip to main content

Advertisement

Log in

Deregulation of the Hippo pathway in mouse mammary stem cells promotes mammary tumorigenesis

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The Hippo–YAP pathway mediates organ size control, contact inhibition, and tumorigenesis. It is a kinase cascade that inhibits the nuclear localization and transcriptional activities of YAP and TAZ. E-cadherin, cell junctions, polarity proteins, and the merlin/NF2 tumor suppressor activate the pathway to inhibit YAP/TAZ activity, while growth factor signaling inhibits the pathway to activate YAP/TAZ in the nucleus. We examined its role in the development of mouse mammary glands and tumor formation using gland reconstitution by transplantation of genetically modified mammary stem cells (MaSCs). Knockdown of YAP and TAZ with shRNA in MaSCs did not inhibit gland reconstitution. In contrast, knockdown of β-catenin blocked gland reconstitution, consistent with the known role of Wnt signaling in mammary gland development. However, we find that Hippo signaling is involved in mammary tumor formation. Expression of a constitutively active form of YAP caused rapid formation of large tumors. Moreover, knockdown of YAP/TAZ slowed the development of tumors in polyoma middle T transgenic mice, a well-studied mammary tumor model involving activation of several signaling pathways. YAP accumulated in nuclei of mammary glands in ErbB2/EGFR-transgenic mice, suggesting that EGFR signaling affects YAP in vivo similar to cell culture. ErbB2/EGFR-transgenic mice develop mammary tumors in 7–8 months, but surprisingly, MaSCs from these mice did not form tumors when transplanted into host mice. Nonetheless, expression of dominant-negative Lats, which inhibits Hippo signaling, leads to tumor formation in ErbB2-transgenic mice, suggesting that Hippo signaling is involved in EGFR-induced mammary tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aragona M, Panciera T, Manfrin A, Giulitti S, Michielin F, Elvassore N, Dupont S, Piccolo S (2013) A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154:1047–1059

    Article  CAS  PubMed  Google Scholar 

  • Bartucci M, Dattilo R, Moriconi C, Pagliuca A, Mottolese M, Federici G, Benedetto AD, Todaro M, Stassi G, Sperati F, Amabile MI, Pilozzi E, Patrizii M, Biffoni M, Maugeri-Sacca M, Piccolo S, De Maria R (2015) TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells. Oncogene 34:681–690

    Article  CAS  PubMed  Google Scholar 

  • Bossuyt W, Chen CL, Chen Q, Sudol M, McNeill H, Pan D, Kopp A, Halder G (2013) An evolutionary shift in the regulation of the Hippo pathway between mice and flies. Oncogene 33(10):1218–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell KS, Ogris E, Burke B, Su W, Auger KR, Druker BJ, Schaffhausen BS, Roberts TM, Pallas DC (1994) Polyoma middle tumor antigen interacts with SHC protein via the NPTY (Asn-Pro-Thr-Tyr) motif in middle tumor antigen. Proc Natl Acad Sci USA 91:6344–6348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardiff RD, Anver MR, Gusterson BA, Hennighausen L, Jensen RA, Merino MJ, Rehm S, Russo J, Tavassoli FA, Wakefield LM, Ward JM, Green JE (2000) The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting. Oncogene 19:968–988

    Article  CAS  PubMed  Google Scholar 

  • Chan SW, Lim CJ, Guo K, Ng CP, Lee I, Hunziker W, Zeng Q, Hong W (2008) A role for TAZ in migration, invasion, and tumorigenesis of breast cancer cells. Cancer Res 68:2592–2598

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Zhang N, Gray RS, Li H, Ewald AJ, Zahnow CA, Pan D (2014) A temporal requirement for Hippo signaling in mammary gland differentiation, growth, and tumorigenesis. Genes Dev 28:432–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen HY, Yu SL, Ho BC, Su KY, Hsu YC, Chang CS, Li YC, Yang SY, Hsu PY, Ho H, Chang YH, Chen CY, Yang HI, Hsu CP, Yang TY, Chen KC, Hsu KH, Tseng JS, Hsia JY, Chuang CY, Yuan S, Lee MH, Liu CH, Wu GI, Hsiung CA, Chen YM, Wang CL, Huang MS, Yu CJ, Chen KY, Tsai YH, Su WC, Chen HW, Chen JJ, Chen CJ, Chang GC, Yang PC, Li KC (2015) R331W missense mutation of oncogene YAP1 Is a germline risk allele for lung adenocarcinoma with medical actionability. J Clin Oncol 33:2303–2310

    Article  CAS  PubMed  Google Scholar 

  • Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C, Inui M, Montagner M, Parenti AR, Poletti A, Daidone MG, Dupont S, Basso G, Bicciato S, Piccolo S (2011) The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 147:759–772

    Article  CAS  PubMed  Google Scholar 

  • Courtneidge SA, Smith AE (1983) Polyoma virus transforming protein associates with the product of the c-src cellular gene. Nature 303:435–439

    Article  CAS  PubMed  Google Scholar 

  • Fan R, Kim NG, Gumbiner BM (2013) Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositide-dependent kinase-1. Proc Natl Acad Sci USA 110:2569–2574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gumbiner BM, Kim NG (2014) The Hippo-YAP signaling pathway and contact inhibition of growth. J Cell Sci 127:709–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ (1992) Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci USA 89:10578–10582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halder G, Johnson RL (2011) Hippo signaling: growth control and beyond. Development 138:9–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halder G, Dupont S, Piccolo S (2012) Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat Rev Mol Cell Biol 13:591–600

    Article  CAS  PubMed  Google Scholar 

  • Hao Y, Chun A, Cheung K, Rashidi B, Yang X (2008) Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J Biol Chem 283:5496–5509

    Article  CAS  PubMed  Google Scholar 

  • Hardy KM, Booth BW, Hendrix MJ, Salomon DS, Strizzi L (2010) ErbB/EGF signaling and EMT in mammary development and breast cancer. J Mammary Gland Biol Neoplas 15:191–199

    Article  Google Scholar 

  • Harvey KF, Zhang X, Thomas DM (2013) The Hippo pathway and human cancer. Nat Rev Cancer 13:246–257

    Article  CAS  PubMed  Google Scholar 

  • Hennighausen L (2000) Mouse models for breast cancer. Breast Cancer Res 2:2–7

    Article  CAS  PubMed  Google Scholar 

  • Hopkins BD, Hodakoski C, Barrows D, Mense SM, Parsons RE (2014) PTEN function: the long and the short of it. Trends Biochem Sci 39:183–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu W, Shakya R, Costantini F (2001) Impaired mammary gland and lymphoid development caused by inducible expression of Axin in transgenic mice. J Cell Biol 155:1055–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim NG, Gumbiner BM (2015) Adhesion to fibronectin regulates Hippo signaling via the FAK–Src–PI3K pathway. J Cell Biol 210:503–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Muller WJ (1999) The role of the epidermal growth factor receptor family in mammary tumorigenesis and metastasis. Exp Cell Res 253:78–87

    Article  CAS  PubMed  Google Scholar 

  • Kim NG, Koh E, Chen X, Gumbiner BM (2011) E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proc Natl Acad Sci USA 108:11930–11935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HM, Jung WH, Koo JS (2015) Expression of Yes-associated protein (YAP) in metastatic breast cancer. Int J Clin Exp Pathol 8:11248–11257

    PubMed  PubMed Central  Google Scholar 

  • Koren S, Bentires-Alj M (2013) Mouse models of PIK3CA mutations: one mutation initiates heterogeneous mammary tumors. FEBS J 280:2758–2765

    Article  CAS  PubMed  Google Scholar 

  • Lai D, Ho KC, Hao Y, Yang X (2011) Taxol resistance in breast cancer cells is mediated by the hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer Res 71:2728–2738

    Article  CAS  PubMed  Google Scholar 

  • Lamar JM, Stern P, Liu H, Schindler JW, Jiang ZG, Hynes RO (2012) The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc Natl Acad Sci USA 109:E2441–E2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Silvis MR, Honaker Y, Lien WH, Arron ST, Vasioukhin V (2016) αE-catenin inhibits a Src-YAP1 oncogenic module that couples tyrosine kinases and the effector of Hippo signaling pathway. Genes Dev 30:798–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin EY, Jones JG, Li P, Zhu L, Whitney KD, Muller WJ, Pollard JW (2003) Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol 163:2113–2126

    Article  PubMed  PubMed Central  Google Scholar 

  • McCaffrey LM, Macara IG (2009) The Par3/aPKC interaction is essential for end bud remodeling and progenitor differentiation during mammary gland morphogenesis. Genes Dev 23:1450–1460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald JH (2015) Handbook of biological statistics. Sparky House Publishing, Baltimore

    Google Scholar 

  • Min Kim H, Kim SK, Jung WH, Koo JS (2015) Metaplastic carcinoma show different expression pattern of YAP compared to triple-negative breast cancer. Tumor Biol 36:1207–1212

    Article  CAS  Google Scholar 

  • Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P (1988) Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 54:105–115

    Article  CAS  PubMed  Google Scholar 

  • Pan D (2015) YAPing hippo forecasts a new target for lung cancer prevention and treatment. J Clin Oncol 33:2311–2313

    Article  PubMed  PubMed Central  Google Scholar 

  • Reddy BV, Irvine KD (2013) Regulation of Hippo signaling by EGFR-MAPK signaling through Ajuba family proteins. Dev Cell 24:459–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su W, Liu W, Schaffhausen BS, Roberts TM (1995) Association of Polyomavirus middle tumor antigen with phospholipase C-γ1. J Biol Chem 270:12331–12334

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi K, Wu LW, Grivennikov SI, de Jong PR, Lian I, Yu FX, Wang K, Ho SB, Boland BS, Chang JT, Sandborn WJ, Hardiman G, Raz E, Maehara Y, Yoshimura A, Zucman-Rossi J, Guan KL, Karin M (2015) A gp130-Src-YAP module links inflammation to epithelial regeneration. Nature 519:57–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Troyer KL, Lee DC (2001) Regulation of mouse mammary gland development and tumorigenesis by the ERBB signaling network. J Mammary Gland Biol Neoplasia 6:7–21

    Article  CAS  PubMed  Google Scholar 

  • Tumaneng K, Russell RC, Guan KL (2012) Organ size control by Hippo and TOR pathways. Curr Biol 22:R368–R379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vici P, Mottolese M, Pizzuti L, Barba M, Sperati F, Terrenato I, Di Benedetto A, Natoli C, Gamucci T, Angelucci D, Ramieri MT, Di Lauro L, Sergi D, Bartucci M, Dattilo R, Pagliuca A, De Maria R, Maugeri-Sacca M (2014) The Hippo transducer TAZ as a biomarker of pathological complete response in HER2-positive breast cancer patients treated with trastuzumab-based neoadjuvant therapy. Oncotarget 5:9619–9625

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W, Xiao ZD, Li X, Aziz KE, Gan B, Johnson RL, Chen J (2015) AMPK modulates Hippo pathway activity to regulate energy homeostasis. Nat Cell Biol 17:490–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welm BE, Dijkgraaf GJ, Bledau AS, Welm AL, Werb Z (2008) Lentiviral transduction of mammary stem cells for analysis of gene function during development and cancer. Cell Stem Cell 2:90–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitman M, Kaplan DR, Schaffhausen B, Cantley L, Roberts TM (1985) Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature 315:239–242

    Article  CAS  PubMed  Google Scholar 

  • Wickenden JA, Watson CJ (2010) Key signalling nodes in mammary gland development and cancer. Signalling downstream of PI3kinase in mammary epithelium: a play in 3 Akts. Breast Cancer Res 12:202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiznerowicz M, Trono D (2003) Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J Virol 77:8957–8961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu FX, Guan KL (2013) The Hippo pathway: regulators and regulations. Genes Dev 27:355–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu FX, Zhao B, Panupinthu N, Jewell JL, Lian I, Wang LH, Zhao J, Yuan H, Tumaneng K, Li H, Fu XD, Mills GB, Guan KL (2012) Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150:780–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu FX, Luo J, Mo JS, Liu G, Kim YC, Meng Z, Zhao L, Peyman G, Ouyang H, Jiang W, Zhao J, Chen X, Zhang L, Wang CY, Bastian BC, Zhang K, Guan KL (2014) Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP. Cancer Cell 25:822–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, Zheng P, Ye K, Chinnaiyan A, Halder G, Lai ZC, Guan KL (2007) Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21:2747–2761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao B, Kim J, Ye X, Lai ZC, Guan KL (2009) Both TEAD-binding and WW domains are required for the growth stimulation and oncogenic transformation activity of yes-associated protein. Cancer Res 69:1089–1098

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Li L, Tumaneng K, Wang CY, Guan KL (2010) A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(β-TRCP). Genes Dev 24:72–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We wish to thank Yongliang Huo for teaching us the MaSC transplantation method while at UVA. We also thank Nam Gyun Kim and Alisha Mendonsa for reading drafts of the manuscript and providing feedback. The work in this manuscript was supported by NIH Grant R01 GM098615 to BMG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry M. Gumbiner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Gumbiner, B.M. Deregulation of the Hippo pathway in mouse mammary stem cells promotes mammary tumorigenesis. Mamm Genome 27, 556–564 (2016). https://doi.org/10.1007/s00335-016-9662-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-016-9662-7

Keywords

Navigation