Skip to main content
Log in

Recommendations for the investigation of animal models of Prader–Willi syndrome

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

PraderWilli syndrome (PWS) occurs in about 1 in 15,000 individuals and is a contiguous gene disorder causing developmental disability, hyperphagia usually with obesity, and behavioral problems, including an increased incidence of psychiatric illness. The genomic imprinting that regulates allele-specific expression of PWS candidate genes, the fact that multiple genes are typically inactivated, and the presence of many genes that produce functional RNAs rather than proteins has complicated the identification of the underlying genetic pathophysiology of PWS. Over 30 genetically modified mouse strains that have been developed and characterized have been instrumental in elucidating the genetic and epigenetic mechanisms for the regulation of PWS genes and in discovering their physiological functions. In 2011, a PWS Animal Models Working Group (AMWG) was established to generate discussions and facilitate exchange of ideas regarding the best use of PWS animal models. Here, we summarize the goals of the AMWG, describe current animal models of PWS, and make recommendations for strategies to maximize the utility of animal models and for the development and use of new animal models of PWS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aebischer J, Sturny R, Andrieu D, Rieusset A, Schaller F, Geib S, Raoul C, Muscatelli F (2011) Necdin protects embryonic motoneurons from programmed cell death. PLoS One 6:e23764

    Article  PubMed  CAS  Google Scholar 

  • Andrieu D, Meziane H, Marly F, Angelats C, Fernandez PA, Muscatelli F (2006) Sensory defects in Necdin deficient mice result from a loss of sensory neurons correlated within an increase of developmental programmed cell death. BMC Dev Biol 6:56

    Article  PubMed  Google Scholar 

  • Bielinska B, Blaydes SM, Buiting K, Yang T, Krajewska-Walasek M, Horsthemke B, Brannan CI (2000) De novo deletions of SNRPN exon 1 in early human and mouse embryos result in a paternal to maternal imprint switch. Nature Genetics 25:74–78

    Article  PubMed  CAS  Google Scholar 

  • Bischof JM, Stewart CL, Wevrick R (2007) Inactivation of the mouse Magel2 gene results in growth abnormalities similar to Prader-Willi syndrome. Hum Mol Genet 16:2713–2719

    Article  PubMed  CAS  Google Scholar 

  • Bittel DC, Kibiryeva N, McNulty SG, Driscoll DJ, Butler MG, White RA (2007) Whole genome microarray analysis of gene expression in an imprinting center deletion mouse model of Prader-Willi syndrome. Am J Med Genet A 143:422–429

    PubMed  Google Scholar 

  • Blaydes SM, Elmore M, Yang T, Brannan CI (1999) Analysis of murine Snrpn and human SNRPN gene imprinting in transgenic mice. Mammalian Genome 10:549–555

    Article  PubMed  CAS  Google Scholar 

  • Boccaccio I, Glatt-Deeley H, Watrin F, Roeckel N, Lalande M, Muscatelli F (1999) The human MAGEL2 gene and its mouse homologue are paternally expressed and mapped to the PraderWilli region. Hum Mol Genet 8:2497–2505

    Article  PubMed  CAS  Google Scholar 

  • Bortolin-Cavaille ML, Cavaille J (2012) The SNORD115 (H/MBII-52) and SNORD116 (H/MBII-85) gene clusters at the imprinted PraderWilli locus generate canonical box C/D snoRNAs. Nucleic Acids Res 40:6800–6807

    Article  PubMed  CAS  Google Scholar 

  • Bressler J, Tsai TF, Wu MY, Tsai SF, Ramirez MA, Armstrong D, Beaudet AL (2001) The SNRPN promoter is not required for genomic imprinting of the Prader-Willi/Angelman domain in mice. Nat Genet 28:232–240

    Article  PubMed  CAS  Google Scholar 

  • Brilliant MH (1992) The mouse pink-eyed dilution locus: a model for aspects of PraderWilli syndrome, Angelman syndrome, and a form of hypomelanosis of Ito. Mamm Genome 3:187–191

    Article  PubMed  CAS  Google Scholar 

  • Buiting K (2010) PraderWilli syndrome and Angelman syndrome. Am J Med Genet C Semin Med Genet 154C:365–376

    Article  PubMed  CAS  Google Scholar 

  • Bush JR, Wevrick R (2010) Loss of Necdin impairs myosin activation and delays cell polarization. Genesis 48:540–553

    Google Scholar 

  • Bush JR, Wevrick R (2012) Loss of the Prader-Willi obesity syndrome protein necdin promotes adipogenesis. Gene 497:45–51

    Article  PubMed  CAS  Google Scholar 

  • Cassidy SB, Schwartz S, Miller JL, Driscoll DJ (2012) PraderWilli syndrome. Genet Med 14:10–26

    Article  PubMed  CAS  Google Scholar 

  • Cattanach BM, Barr JA, Evans EP, Burtenshaw M, Beechey CV, Leff SE, Brannan CI, Copeland NG, Jenkins NA, Jones J (1992) A candidate mouse model for PraderWilli syndrome which shows an absence of Snrpn expression. Nat Genet 2:270–274

    Article  PubMed  CAS  Google Scholar 

  • Cavaillé J, Buiting K, Kiefmann M, Lalande M, Brannan CI, Horsthemke B, Bachellerie JP, Brosius J, Huttenhofer A (2000) Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc Natl Acad Sci USA 97:14311–14316

    Article  PubMed  Google Scholar 

  • Chai JH, Locke DP, Ohta T, Greally JM, Nicholls RD (2001) Retrotransposed genes such as Frat3 in the mouse Chromosome 7C Prader-Willi syndrome region acquire the imprinted status of their insertion site. Mamm Genome 12:813–821

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain SJ, Brannan CI (2001) The Prader-Willi syndrome imprinting center activates the paternally expressed murine Ube3a antisense transcript but represses paternal Ube3a. Genomics 73:316–322

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain SJ, Chen PF, Ng KY, Bourgois-Rocha F, Lemtiri-Chlieh F, Levine ES, Lalande M (2010) Induced pluripotent stem cell models of the genomic imprinting disorders Angelman and PraderWilli syndromes. Proc Natl Acad Sci USA 107:17668–17673

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain SJ, Johnstone KA, DuBose AJ, Simon TA, Bartolomei MS, Resnick JL, Brannan CI (2004) Evidence for genetic modifiers of postnatal lethality in PWS-IC deletion mice. Hum Mol Genet 13:2971–2977

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain SJ, Lalande M (2010) Neurodevelopmental disorders involving genomic imprinting at human chromosome 15q11-q13. Neurobiol Dis 39:13–20

    Article  PubMed  CAS  Google Scholar 

  • Cundiff PE, Anderson SA (2011) Impact of induced pluripotent stem cells on the study of central nervous system disease. Curr Opin Genet Dev 21:354–361

    Article  PubMed  CAS  Google Scholar 

  • Deponti D, Francois S, Baesso S, Sciorati C, Innocenzi A, Broccoli V, Muscatelli F, Meneveri R, Clementi E, Cossu G, Brunelli S (2007) Necdin mediates skeletal muscle regeneration by promoting myoblast survival and differentiation. J Cell Biol 179:305–319

    Article  PubMed  CAS  Google Scholar 

  • Ding F, Li HH, Li J, Myers RM, Francke U (2010) Neonatal maternal deprivation response and developmental changes in gene expression revealed by hypothalamic gene expression profiling in mice. PLoS One 5:e9402

    Article  PubMed  Google Scholar 

  • Ding F, Li HH, Zhang S, Solomon NM, Camper SA, Cohen P, Francke U (2008) SnoRNA Snord116 (Pwcr1/MBII-85) deletion causes growth deficiency and hyperphagia in mice. PLoS One 3:e1709

    Article  PubMed  Google Scholar 

  • Ding F, Prints Y, Dhar MS, Johnson DK, Garnacho-Montero C, Nicholls RD, Francke U (2005) Lack of Pwcr1/MBII-85 snoRNA is critical for neonatal lethality in Prader-Willi syndrome mouse models. Mamm Genome 16:424–431

    Article  PubMed  CAS  Google Scholar 

  • Doe CM, Relkovic D, Garfield AS, Dalley JW, Theobald DE, Humby T, Wilkinson LS, Isles AR (2009) Loss of the imprinted snoRNA mbii-52 leads to increased 5htr2c pre-RNA editing and altered 5HT2CR-mediated behaviour. Hum Mol Genet 18:2140–2148

    Article  PubMed  CAS  Google Scholar 

  • DuBose AJ, Johnstone KA, Smith EY, Hallett RA, Resnick JL (2010) Atp10a, a gene adjacent to the PWS/AS gene cluster, is not imprinted in mouse and is insensitive to the PWS-IC. Neurogenetics 11:145–151

    Article  PubMed  CAS  Google Scholar 

  • DuBose AJ, Smith EY, Johnstone KA, Resnick JL (2012) Temporal and developmental requirements for the Prader-Willi imprinting center. Proc Natl Acad Sci USA 109:3446–3450

    Article  PubMed  CAS  Google Scholar 

  • DuBose AJ, Smith EY, Yang TP, Johnstone KA, Resnick JL (2011) A new deletion refines the boundaries of the murine Prader-Willi syndrome imprinting center. Hum Mol Genet 20:3461–3466

    Article  PubMed  CAS  Google Scholar 

  • El-Maarri O, Buiting K, Peery EG, Kroisel PM, Balaban B, Wagner K, Urman B, Heyd J, Lich C, Brannan CI, Walter J, Horsthemke B (2001) Maternal methylation imprints on human chromosome 15 are established during or after fertilization. Nat Genet 27:341–344

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara K, Hasegawa K, Ohkumo T, Miyoshi H, Tseng YH, Yoshikawa K (2012) Necdin controls proliferation of white adipocyte progenitor cells. PLoS One 7:e30948

    Article  PubMed  CAS  Google Scholar 

  • Gabriel JM, Merchant M, Ohta T, Ji Y, Caldwell RG, Ramsey MJ, Tucker JD, Longnecker R, Nicholls RD (1999) A transgene insertion creating a heritable chromosome deletion mouse model of Prader-Willi and angelman syndromes. Proc Natl Acad Sci USA 96:9258–9263

    Article  PubMed  CAS  Google Scholar 

  • Ge Y, Ohta T, Driscoll DJ, Nicholls RD, Kalra SP (2002) Anorexigenic melanocortin signaling in the hypothalamus is augmented in association with failure-to-thrive in a transgenic mouse model for Prader-Willi syndrome. Brain Res 957:42–45

    Article  PubMed  CAS  Google Scholar 

  • Gerard M, Hernandez L, Wevrick R, Stewart CL (1999) Disruption of the mouse necdin gene results in early post-natal lethality. Nat Genet 23:199–202

    Article  PubMed  CAS  Google Scholar 

  • Goldstone AP, Holland AJ, Hauffa BP, Hokken-Koelega AC, Tauber M (2008) Recommendations for the diagnosis and management of PraderWilli syndrome. J Clin Endocrinol Metab 93:4183–4197

    Article  PubMed  CAS  Google Scholar 

  • Gray TA, Saitoh S, Nicholls RD (1999) An imprinted, mammalian bicistronic transcript encodes two independent proteins. Proc Natl Acad Sci USA 96:5616–5621

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa K, Yoshikawa K (2008) Necdin regulates p53 acetylation via Sirtuin1 to modulate DNA damage response in cortical neurons. J Neurosci 28:8772–8784

    Article  PubMed  CAS  Google Scholar 

  • Johnstone KA, DuBose AJ, Futtner CR, Elmore MD, Brannan CI, Resnick JL (2006) A human imprinting centre demonstrates conserved acquisition but diverged maintenance of imprinting in a mouse model for Angelman syndrome imprinting defects. Hum Mol Genet 15:393–404

    Article  PubMed  CAS  Google Scholar 

  • Jong MT, Gray TA, Ji Y, Glenn CC, Saitoh S, Driscoll DJ, Nicholls RD (1999) A novel imprinted gene, encoding a RING zinc-finger protein, and overlapping antisense transcript in the PraderWilli syndrome critical region. Hum Mol Genet 8:783–793

    Article  PubMed  CAS  Google Scholar 

  • Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8:e1000412

    Article  PubMed  Google Scholar 

  • Kishore S, Khanna A, Zhang Z, Hui J, Balwierz PJ, Stefan M, Beach C, Nicholls RD, Zavolan M, Stamm S (2010) The snoRNA MBII-52 (SNORD 115) is processed into smaller RNAs and regulates alternative splicing. Hum Mol Genet 19:1153–1164

    Article  PubMed  CAS  Google Scholar 

  • Kozlov SV, Bogenpohl JW, Howell MP, Wevrick R, Panda S, Hogenesch JB, Muglia LJ, Van Gelder RN, Herzog ED, Stewart CL (2007) The imprinted gene Magel2 regulates normal circadian output. Nat Genet 39:1266–1272

    Article  PubMed  CAS  Google Scholar 

  • Kubota Y, Osawa M, Jakt LM, Yoshikawa K, Nishikawa S (2009) Necdin restricts proliferation of hematopoietic stem cells during hematopoietic regeneration. Blood 114:4383–4392

    Article  PubMed  CAS  Google Scholar 

  • Kurita M, Kuwajima T, Nishimura I, Yoshikawa K (2006) Necdin downregulates CDC2 expression to attenuate neuronal apoptosis. J Neurosci 26:12003–12013

    Article  PubMed  CAS  Google Scholar 

  • Kuwajima T, Hasegawa K, Yoshikawa K (2010) Necdin promotes tangential migration of neocortical interneurons from basal forebrain. J Neurosci 30:3709–3714

    Article  PubMed  CAS  Google Scholar 

  • Kuwajima T, Nishimura I, Yoshikawa K (2006) Necdin promotes GABAergic neuron differentiation in cooperation with Dlx homeodomain proteins. J Neurosci 26:5383–5392

    Article  PubMed  CAS  Google Scholar 

  • Kuwako K, Hosokawa A, Nishimura I, Uetsuki T, Yamada M, Nada S, Okada M, Yoshikawa K (2005) Disruption of the paternal necdin gene diminishes TrkA signaling for sensory neuron survival. J Neurosci 25:7090–7099

    Article  PubMed  CAS  Google Scholar 

  • Landers M, Bancescu DL, Le Meur E, Rougeulle C, Glatt-Deeley H, Brannan C, Muscatelli F, Lalande M (2004) Regulation of the large (~1000 kb) imprinted murine Ube3a antisense transcript by alternative exons upstream of Snurf/Snrpn. Nucleic Acids Res 32:3480–3492

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Kozlov S, Hernandez L, Chamberlain SJ, Brannan CI, Stewart CL, Wevrick R (2000) Expression and imprinting of MAGEL2 suggest a role in PraderWilli syndrome and the homologous murine imprinting phenotype. Hum Mol Genet 9:1813–1819

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Walker CL, Karten B, Kuny SL, Tennese AA, O’Neill MA, Wevrick R (2005) Essential role for the Prader-Willi syndrome protein necdin in axonal outgrowth. Hum Mol Genet 14:627–637

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Walker CL, Wevrick R (2003) PraderWilli syndrome transcripts are expressed in phenotypically significant regions of the developing mouse brain. Gene Expr Patterns 3:599–609

    Article  PubMed  CAS  Google Scholar 

  • Leff SE, Brannan CI, Reed ML, Ozcelik T, Francke U, Copeland NG, Jenkins NA (1992) Maternal imprinting of the mouse Snrpn gene and conserved linkage homology with the human PraderWilli syndrome region. Nat Genet 2:259–264

    Article  PubMed  CAS  Google Scholar 

  • Leung KN, Vallero RO, DuBose AJ, Resnick JL, LaSalle JM (2009) Imprinting regulates mammalian snoRNA-encoding chromatin decondensation and neuronal nucleolar size. Hum Mol Genet 18:4227–4238

    Article  PubMed  CAS  Google Scholar 

  • MacDonald HR, Wevrick R (1997) The necdin gene is deleted in PraderWilli syndrome and is imprinted in human and mouse. Hum Mol Genet 6:1873–1878

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K, Usami M, Aizawa T, Yoshikawa K (1991) A novel brain-specific mRNA encoding nuclear protein (necdin) expressed in neurally differentiated embryonal carcinoma cells. Biochem Biophys Res Commun 178:291–296

    Article  PubMed  CAS  Google Scholar 

  • Mercer RE, Kwolek EM, Bischof JM, van Eede M, Henkelman RM, Wevrick R (2009a) Regionally reduced brain volume, altered serotonin neurochemistry, and abnormal behavior in mice null for the circadian rhythm output gene Magel2. Am J Med Genet B Neuropsychiatr Genet 150B:1085–1099

    Article  PubMed  CAS  Google Scholar 

  • Mercer RE, Michaelson SD, Chee MJ, Atallah TA, Wevrick R, Colmers WF (2013) Magel2 is required for leptin-mediated depolarization of POMC neurons in the hypothalamic arcuate nucleus in mice. PLoS Genet 9:e1003207

    Article  PubMed  CAS  Google Scholar 

  • Mercer RE, Wevrick R (2009b) Loss of magel2, a candidate gene for features of Prader-Willi syndrome, impairs reproductive function in mice. PLoS One 4:e4291

    Article  PubMed  Google Scholar 

  • Mercer RE, Wevrick R (2012) Energy homeostasis in PraderWilli syndrome: how clinical research informs studies of animal models of genetic obesity: comment on “Nutritional phases in PraderWilli syndrome”, Miller et al., 2011. Am J Med Genet Part A, 155:1040–1049. Am J Med Genet A 158A:966–968

    Article  PubMed  Google Scholar 

  • Miller NL, Wevrick R, Mellon PL (2009) Necdin, a Prader-Willi syndrome candidate gene, regulates gonadotropin-releasing hormone neurons during development. Hum Mol Genet 18:248–260

    Article  PubMed  CAS  Google Scholar 

  • Miller JL, Lynn CH, Driscoll DC, Goldstone AP, Gold JA, Kimonis V, Dykens E, Butler MG, Shuster JJ, Driscoll DJ (2011) Nutritional phases in PraderWilli syndrome. Am J Med Genet A 155A:1040–1049

    PubMed  Google Scholar 

  • Muscatelli F, Abrous DN, Massacrier A, Boccaccio I, Le Moal M, Cau P, Cremer H (2000) Disruption of the mouse Necdin gene results in hypothalamic and behavioral alterations reminiscent of the human Prader-Willi syndrome. Hum Mol Genet 9:3101–3110

    Article  PubMed  CAS  Google Scholar 

  • Neumann LC, Markaki Y, Mladenov E, Hoffmann D, Buiting K, Horsthemke B (2012) The imprinted NPAP1/C15orf2 gene in the PraderWilli syndrome region encodes a nuclear pore complex associated protein. Hum Mol Genet 21:4038–4048

    Article  PubMed  CAS  Google Scholar 

  • Nicholls RD, Knepper JL (2001) Genome organization, function, and imprinting in PraderWilli and Angelman syndromes. Annu Rev Genomics Hum Genet 2:153–175

    Article  PubMed  CAS  Google Scholar 

  • Nicholls RD, Gottlieb W, Russell LB, Davda M, Horsthemke B, Rinchik EM (1993) Evaluation of potential models for imprinted and nonimprinted components of human chromosome 15q11-q13 syndromes by fine-structure homology mapping in the mouse. Proc Natl Acad Sci USA 90:2050–2054

    Article  PubMed  CAS  Google Scholar 

  • Pagliardini S, Ren J, Wevrick R, Greer JJ (2005) Developmental abnormalities of neuronal structure and function in prenatal mice lacking the prader-willi syndrome gene necdin. Am J Pathol 167:175–191

    Article  PubMed  CAS  Google Scholar 

  • Peery EG, Elmore MD, Resnick JL, Brannan CI, Johnstone KA (2007) A targeted deletion upstream of Snrpn does not result in an imprinting defect. Mamm Genome 18:255–262

    Article  PubMed  CAS  Google Scholar 

  • Rabinovitz S, Kaufman Y, Ludwig G, Razin A, Shemer R (2012) Mechanisms of activation of the paternally expressed genes by the Prader-Willi imprinting center in the Prader-Willi/Angelman syndromes domains. Proc Natl Acad Sci USA 109:7403–7408

    Google Scholar 

  • Relkovic D, Doe CM, Humby T, Johnstone KA, Resnick JL, Holland AJ, Hagan JJ, Wilkinson LS, Isles AR (2010) Behavioural and cognitive abnormalities in an imprinting centre deletion mouse model for Prader-Willi syndrome. Eur J Neurosci 31:156–164

    Article  PubMed  Google Scholar 

  • Ren J, Lee S, Pagliardini S, Gerard M, Stewart CL, Greer JJ, Wevrick R (2003) Absence of Ndn, encoding the Prader-Willi syndrome-deleted gene necdin, results in congenital deficiency of central respiratory drive in neonatal mice. J Neurosci 23:1569–1573

    PubMed  CAS  Google Scholar 

  • Russell LB, Montgomery CS, Cacheiro NL, Johnson DK (1995) Complementation analyses for 45 mutations encompassing the pink-eyed dilution (p) locus of the mouse. Genetics 141:1547–1562

    PubMed  CAS  Google Scholar 

  • Schaller F, Watrin F, Sturny R, Massacrier A, Szepetowski P, Muscatelli F (2010) A single postnatal injection of oxytocin rescues the lethal feeding behaviour in mouse newborns deficient for the imprinted Magel2 gene. Hum Mol Genet 19:4895–4905

    Article  PubMed  CAS  Google Scholar 

  • Sciorati C, Touvier T, Buono R, Pessina P, Francois S, Perrotta C, Meneveri R, Clementi E, Brunelli S (2009) Necdin is expressed in cachectic skeletal muscle to protect fibers from tumor-induced wasting. J Cell Sci 122:1119–1125

    Article  PubMed  CAS  Google Scholar 

  • Skryabin BV, Gubar LV, Seeger B, Pfeiffer J, Handel S, Robeck T, Karpova E, Rozhdestvensky TS, Brosius J (2007) Deletion of the MBII-85 snoRNA gene cluster in mice results in postnatal growth retardation. PLoS Genet 3:e235

    Article  PubMed  Google Scholar 

  • Smith EY, Futtner CR, Chamberlain SJ, Johnstone KA, Resnick JL (2011) Transcription is required to establish maternal imprinting at the Prader-Willi syndrome and Angelman syndrome locus. PLoS Genet 7:e1002422

    Article  PubMed  CAS  Google Scholar 

  • Stefan M, Claiborn KC, Stasiek E, Chai JH, Ohta T, Longnecker R, Greally JM, Nicholls RD (2005a) Genetic mapping of putative Chrna7 and Luzp2 neuronal transcriptional enhancers due to impact of a transgene-insertion and 6.8 Mb deletion in a mouse model of Prader-Willi and Angelman syndromes. BMC Genomics 6:157

    Article  PubMed  Google Scholar 

  • Stefan M, Ji H, Simmons RA, Cummings DE, Ahima RS, Friedman MI, Nicholls RD (2005b) Hormonal and metabolic defects in a prader-willi syndrome mouse model with neonatal failure to thrive. Endocrinology 146:4377–4385

    Article  PubMed  CAS  Google Scholar 

  • Stefan M, Portis T, Longnecker R, Nicholls RD (2005c) A nonimprinted Prader-Willi Syndrome (PWS)-region gene regulates a different chromosomal domain in trans but the imprinted pws loci do not alter genome-wide mRNA levels. Genomics 85:630–640

    Article  PubMed  CAS  Google Scholar 

  • Stefan M, Simmons RA, Bertera S, Trucco M, Esni F, Drain P, Nicholls RD (2011) Global deficits in development, function, and gene expression in the endocrine pancreas in a deletion mouse model of Prader-Willi syndrome. Am J Physiol Endocrinol Metab 300:E909–E922

    Article  PubMed  CAS  Google Scholar 

  • Takano K, Okajima M, Saitoh S (2007) DNA demethylation reactivation of imprinted genes in cell lines from patients with Prader-Willi syndrome and a mouse model. Am J Med Genet A 143A:1386–1390

    Article  PubMed  CAS  Google Scholar 

  • Tennese AA, Gee CB, Wevrick R (2008) Loss of the Prader-Willi syndrome protein necdin causes defective migration, axonal outgrowth, and survival of embryonic sympathetic neurons. Dev Dyn 237:1935–1943

    Article  PubMed  Google Scholar 

  • Tennese AA, Wevrick R (2011) Impaired hypothalamic regulation of endocrine function and delayed counterregulatory response to hypoglycemia in Magel2-null mice. Endocrinology 152:967–978

    Article  PubMed  CAS  Google Scholar 

  • Tsai TF, Armstrong D, Beaudet AL (1999) Necdin-deficient mice do not show lethality or the obesity and infertility of Prader-Willi syndrome. Nat Genet 22:15–16

    Article  PubMed  CAS  Google Scholar 

  • Tsai TF, Chen KS, Weber JS, Justice MJ, Beaudet AL (2002) Evidence for translational regulation of the imprinted Snurf-Snrpn locus in mice. Hum Mol Genet 11:1659–1668

    Article  PubMed  CAS  Google Scholar 

  • Tschop MH, Speakman JR, Arch JR, Auwerx J, Bruning JC, Chan L, Eckel RH, Farese RV Jr, Galgani JE, Hambly C, Herman MA, Horvath TL, Kahn BB, Kozma SC, Maratos-Flier E, Muller TD, Munzberg H, Pfluger PT, Plum L, Reitman ML, Rahmouni K, Shulman GI, Thomas G, Kahn CR, Ravussin E (2012) A guide to analysis of mouse energy metabolism. Nat Methods 9:57–63

    Article  Google Scholar 

  • van Amerongen R, Nawijn M, Franca-Koh J, Zevenhoven J, van der Gulden H, Jonkers J, Berns A (2005) Frat is dispensable for canonical Wnt signaling in mammals. Genes Dev 19:425–430

    Article  PubMed  Google Scholar 

  • Wevrick R, Kerns JA, Francke U (1994) Identification of a novel paternally expressed gene in the PraderWilli syndrome region. Hum Mol Genet 3:1877–1882

    Article  PubMed  CAS  Google Scholar 

  • Whittington J, Holland A (2010) Neurobehavioral phenotype in PraderWilli syndrome. Am J Med Genet C Semin Med Genet 154C:438–447

    Article  PubMed  Google Scholar 

  • Wu MY, Jiang M, Zhai X, Beaudet AL, Wu RC (2012) An unexpected function of the prader-willi syndrome imprinting center in maternal imprinting in mice. PLoS One 7:e34348

    Article  PubMed  CAS  Google Scholar 

  • Wu MY, Tsai TF, Beaudet AL (2006) Deficiency of Rbbp1/Arid4a and Rbbp1l1/Arid4b alters epigenetic modifications and suppresses an imprinting defect in the PWS/AS domain. Genes Dev 20:2859–2870

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Adamson TE, Resnick JL, Leff S, Wevrick R, Francke U, Jenkins NA, Copeland NG, Brannan CI (1998) A mouse model for PraderWilli syndrome imprinting-centre mutations. Nat Genet 19:25–31

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Cai J, Zhang Y, Wang X, Li W, Xu J, Li F, Guo X, Deng K, Zhong M, Chen Y, Lai L, Pei D, Esteban MA (2010) Induced pluripotent stem cells can be used to model the genomic imprinting disorder PraderWilli syndrome. J Biol Chem 285:40303–40311

    Article  PubMed  CAS  Google Scholar 

  • Yin QF, Yang L, Zhang Y, Xiang JF, Wu YW, Carmichael GG, Chen LL (2012) Long noncoding RNAs with snoRNA ends. Mol Cell 48:219–230

    Article  PubMed  CAS  Google Scholar 

  • Zanella S, Barthelemy M, Muscatelli F, Hilaire G (2008a) Necdin gene, respiratory disturbances and Prader-Willi syndrome. Adv Exp Med Biol 605:159–164

    Article  PubMed  Google Scholar 

  • Zanella S, Tauber M, Muscatelli F (2009) Breathing deficits of the Prader-Willi syndrome. Respir Physiol Neurobiol 168:119–124

    Article  PubMed  Google Scholar 

  • Zanella S, Watrin F, Mebarek S, Marly F, Roussel M, Gire C, Diene G, Tauber M, Muscatelli F, Hilaire G (2008b) Necdin plays a role in the serotonergic modulation of the mouse respiratory network: implication for Prader-Willi syndrome. J Neurosci 28:1745–1755

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the many researchers who contributed to the online survey of resources and needs in Animal Models of PWS. We also thank Dr. Theresa Strong, Scientific Director for the Foundation for PraderWilli Research, and the participants at the PraderWilli Syndrome Research Strategy Workshop, Mouse Models Workshop, held in Bethesda, MD, in November 2009. Grant sponsor was the Foundation for PraderWilli Research (FPWR).

Disclosure

This report was commissioned by FPWR but FPWR made no contribution to the content of the report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Wevrick.

Electronic supplementary material

Below is the link to the electronic supplementary material.

335_2013_9454_MOESM1_ESM.pdf

Online Resource 1. Bibliography of research papers using mice with mutations in PWS-orthologous genes.Supplementary material 1 (PDF 60 kb)

335_2013_9454_MOESM2_ESM.pdf

Online Resource 2. Links to resource databases used by other Foundations focused on research on specific genetic diseases with developmental disability and/or obesity. Supplementary material 2 (PDF 133 kb)

335_2013_9454_MOESM3_ESM.pdf

Online Resource 3. Guidelines established for preclinical testing in animal models of other genetic diseases, Phenotyping Centers, and useful reference material for phenotypic testing in animals. Supplementary material 3 (PDF 64 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Resnick, J.L., Nicholls, R.D. & Wevrick, R. Recommendations for the investigation of animal models of Prader–Willi syndrome. Mamm Genome 24, 165–178 (2013). https://doi.org/10.1007/s00335-013-9454-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-013-9454-2

Keywords

Navigation