Skip to main content
Log in

Arabidopsis TCX8 functions as a senescence modulator by regulating LOX2 expression

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

TCX8 localizes to nucleus and has transcriptional repression activity. TCX8 binds to the promoter region of LOX2 encoding lipoxygenase, causing JA biosynthesis suppression, and thereby delays plant senescence.

Abstract

Conserved CXC domain-containing proteins are found in most eukaryotes. Eight TCX proteins, which are homologs of animal CXC–Hinge–CXC (CHC) proteins, were identified in Arabidopsis, and three of them, TSO1, TCX2/SOL2 and TCX3/SOL1, have been reported to affect cell-cycle control. TCX8, one of the TCX family proteins, was believed to be a TF but its precise function has not been reported. Yeast two-hybrid screening revealed TCP20, a TF that binds to the promoter of LOX2 encoding lipoxygenase, as a strong candidate for interaction with TCX8. We confirmed that TCX8 directly interacts with TCP20 using in vitro pull-down assay and in vivo BiFC and observed that TCX8, as a TF, localizes to nucleus. Using EMSA and by analyzing phenotypes of TCX8-overexpression lines, we demonstrated that TCX8 regulates the expression of LOX2 by binding to either cis-element of LOX2 promoter to which TCP20 or TCP4 binds, affecting JA biosynthesis, and thereby delaying plant senescence. Our study provides new information about the role of TCX8 in modulating plant senescence through regulating LOX2 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GUS:

β-Glucuronidase

JA:

Jasmonic acid

LOX:

Lipoxygenase

LUC:

Luciferase

TCX:

Tesmin/TSO1-like CXC domain-containing protein

TF:

Transcription factor

References

  • Aggarwal P, Das Gupta M, Joseph AP, Chatterjee N, Srinivasan N, Nath U (2010) Identification of specific DNA binding residues in the TCP family of transcription factors in Arabidopsis. Plant Cell 22:1174–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen SU et al (2007) The conserved cysteine-rich domain of a tesmin/TSO1-like protein binds zinc in vitro and TSO1 is required for both male and female fertility in Arabidopsis thaliana. J Exp Bot 58:3657–3670

    Article  CAS  PubMed  Google Scholar 

  • Aoyama T, Chua NH (1997) A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J 11:605–612

    Article  CAS  PubMed  Google Scholar 

  • Bannenberg G, Martinez M, Hamberg M, Castresana C (2009) Diversity of the enzymatic activity in the lipoxygenase gene family of Arabidopsis thaliana. Lipids 44:85–95

    Article  CAS  PubMed  Google Scholar 

  • Beitel GJ, Lambie EJ, Horvitz HR (2000) The C-elegans gene lin-9, which acts in an Rb-related pathway, is required for gonadal sheath cell development and encodes a novel protein. Gene 254:253–263

    Article  CAS  PubMed  Google Scholar 

  • Chytilova E, Macas J, Sliwinska E, Rafelski SM, Lambert GM, Galbraith DW (2000) Nuclear dynamics in Arabidopsis thaliana. Mol Biol Cell 11:2733–2741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Danisman S (2016) TCP transcription factors at the interface between environmental challenges and the plant’s growth responses. Front Plant Sci 7:1930

    Article  PubMed  PubMed Central  Google Scholar 

  • Danisman S et al (2012) Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically. Plant Physiol 159:1511–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danisman S et al (2013) Analysis of functional redundancies within the Arabidopsis TCP transcription factor family. J Exp Bot 64:5673–5685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer M, Muller GA (2017) Cell cycle transcription control: DREAM/MuvB and RB-E2F complexes. Crit Rev Biochem Mol Biol 52:638–662

    Article  CAS  PubMed  Google Scholar 

  • Gould SJ, Subramani S (1988) Firefly luciferase as a tool in molecular and cell biology. Anal Biochem 175:5–13

    Article  CAS  PubMed  Google Scholar 

  • Haga N et al (2007) R1R2R3-Myb proteins positively regulate cytokinesis through activation of KNOLLE transcription in Arabidopsis thaliana. Development 134:1101–1110

    Article  CAS  PubMed  Google Scholar 

  • Hauser BA, He JQ, Park SO, Gasser CS (2000) TSO1 is a novel protein that modulates cytokinesis and cell expansion in Arabidopsis. Development 127:2219–2226

    Article  CAS  PubMed  Google Scholar 

  • Hensel LL, Grbić V, Baumgarten DA, Bleecker AB (1993) Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidopsis. Plant Cell 5:553–564

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang J, White-Cooper H (2003) Transcriptional activation in Drosophila spermatogenesis involves the mutually dependent function of aly and a novel meiotic arrest gene cookie monster. Development 130:563–573

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Benson E, Bausek N, Doggett K, White-Cooper H (2007) Tombola, a tesmin/TSO1-family protein, regulates transcriptional activation in the Drosophila male germline and physically interacts with always early. Development 134:1549–1559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin JB, Kim YA, Kim SJ, Lee SH, Kim DH, Cheong GW, Hwang I (2001) A new dynamin-like protein, ADL6, is involved in trafficking from the trans-Golgi network to the central vacuole in Arabidopsis. Plant Cell 13:1511–1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Kim JH, Lyu JI, Woo HR, Lim PO (2018) New insights into the regulation of leaf senescence in Arabidopsis. J Exp Bot 69:787–799

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K et al (2015) Transcriptional repression by MYB3R proteins regulates plant organ growth. EMBO J 34:1992–2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koncz C, Schell J (1986) The promoter of T L-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol General Genet MGG 204:383–396

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids: measurement and characterization by UV–VIS spectroscopy. Curr Protocols Food Anal Chem 1:F4.3.1-F4.3.8

    Article  Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    Article  CAS  PubMed  Google Scholar 

  • Lin TY, Viswanathan S, Wood C, Wilson PG, Wolf N, Fuller MT (1996) Coordinate developmental control of the meiotic cell cycle and spermatid differentiation in Drosophila males. Development 122:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Lopez JA, Sun Y, Blair PB, Mukhtar MS (2015) TCP three-way handshake: linking developmental processes with plant immunity. Trends Plant Sci 20:238–245

    Article  CAS  PubMed  Google Scholar 

  • Magyar Z, Bogre L, Ito M (2016) DREAMs make plant cells to cycle or to become quiescent. Curr Opin Plant Biol 34:100–106

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nguyen HT, Kim SY, Cho KM, Hong JC, Shin JS, Kim HJ (2016) A transcription factor gammaMYB1 binds to the P1BS cis-element and activates PLA2-gamma expression with its co-activator gammaMYB2. Plant Cell Physiol 57:784–797

    Article  CAS  PubMed  Google Scholar 

  • Noh YS, Amasino RM (1999) Identification of a promoter region responsible for the senescence-specific expression of SAG12. Plant Mol Biol 41:181–194

    Article  CAS  PubMed  Google Scholar 

  • Porta H, Rocha-Sosa M (2002) Plant lipoxygenases. Physiological and molecular features. Plant Physiol 130:15–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi T et al (2015) Regulation of jasmonate-induced leaf senescence by antagonism between bHLH subgroup IIIe and IIId factors in Arabidopsis. Plant Cell 27:1634–1649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadasivam S, DeCaprio JA (2013) The DREAM complex: master coordinator of cell cycle-dependent gene expression. Nat Rev Cancer 13:585–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarvepalli K, Nath U (2011) Hyper-activation of the TCP4 transcription factor in Arabidopsis thaliana accelerates multiple aspects of plant maturation. Plant J 67:595–607

    Article  CAS  PubMed  Google Scholar 

  • Schmit F et al (2007) LINC, a human complex that is related to pRB-containing complexes in invertebrates regulates the expression of G2/M genes. Cell Cycle 6:1903–1913

    Article  CAS  PubMed  Google Scholar 

  • Seltmann MA, Stingl NE, Lautenschlaeger JK, Krischke M, Mueller MJ, Berger S (2010) Differential impact of lipoxygenase 2 and jasmonates on natural and stress-induced senescence in Arabidopsis. Plant Physiol 152:1940–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simmons AR, Davies KA, Wang W, Liu Z, Bergmann DC (2019) SOL1 and SOL2 regulate fate transition and cell divisions in the Arabidopsis stomatal lineage. Development 146:dev171066

    Article  PubMed  PubMed Central  Google Scholar 

  • Song JY, Leung T, Ehler LK, Wang C, Liu Z (2000) Regulation of meristem organization and cell division by TSO1, an Arabidopsis gene with cysteine-rich repeats. Development 127:2207–2217

    Article  CAS  PubMed  Google Scholar 

  • Sugihara T, Wadhwa R, Kaul SC, Mitsui Y (1999) A novel testis-specific metallothionein-like protein, tesmin, is an early marker of male germ cell differentiation. Genomics 57:130–136

    Article  CAS  PubMed  Google Scholar 

  • Viola IL, Reinheimer R, Ripoll R, Manassero NG, Gonzalez DH (2012) Determinants of the DNA binding specificity of class I and class II TCP transcription factors. J Biol Chem 287:347–356

    Article  CAS  PubMed  Google Scholar 

  • Walter M et al (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40:428–438

    Article  CAS  PubMed  Google Scholar 

  • Wang MY et al (2013) The cotton transcription factor TCP14 functions in auxin-mediated epidermal cell differentiation and elongation. Plant Physiol 162:1669–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Sijacic P, Xu P, Lian H, Liu Z (2018) Arabidopsis TSO1 and MYB3R1 form a regulatory module to coordinate cell proliferation with differentiation in shoot and root. Proc Natl Acad Sci USA 115:E3045–E3054

    CAS  PubMed  Google Scholar 

  • Weaver LM, Gan S, Quirino B, Amasino RM (1998) A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant Mol Biol 37:455–469

    Article  CAS  PubMed  Google Scholar 

  • Wu JF et al (2016) LWD-TCP complex activates the morning gene CCA1 in Arabidopsis. Nat Commun 7:13181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zhou C (2013) Signal transduction in leaf senescence. Plant Mol Biol 82:539–545

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant (PJ01367001 to J.S.S.) from the Next-Generation BioGreen21 Program funded by the Rural Development Administration and by Grants (2019R1F1A1060014 to J.S.S. and 2020R1A6A1A03044344 to J.C.H.) from the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT, Republic of Korea. This work was also partially supported by Korea University.

Author information

Authors and Affiliations

Authors

Contributions

MN, SYK and JSS conceived the study; MN and SYK designed experiments; MN, JSS and SYK performed experiments; JCH provided Arabidopsis TF library and helped yeast screening; MN and JSS wrote the manuscript.

Corresponding authors

Correspondence to Soo Youn Kim or Jeong Sheop Shin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Youn-Il Park.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1629 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noh, M., Shin, J.S., Hong, J.C. et al. Arabidopsis TCX8 functions as a senescence modulator by regulating LOX2 expression. Plant Cell Rep 40, 677–689 (2021). https://doi.org/10.1007/s00299-021-02663-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-021-02663-y

Keywords

Navigation