Skip to main content

Advertisement

Log in

Evaluation of the Use of Selective PCR Amplification of LPS Biosynthesis Genes for Molecular Typing of Leptospira at the Serovar Level

  • Published:
Current Microbiology Aims and scope Submit manuscript

An Erratum to this article was published on 08 October 2010

Abstract

Leptospirosis is an important epidemic zoonosis worldwide. Currently, there are more than 250 Leptospira pathogenic serovars known that can potentially infect humans. Conventional classification of leptospires with the serovar as the basic taxon, based on serological recognition of lipopolysaccharide (LPS) composition does not correlate well with species determination, based on general genomic features. Here, we investigate the selective amplification of polymorphic regions from the LPS biosynthesis loci (rfb) as a potential tool for serovar typing of Leptospira interrogans species. Eight pairs of primers were designed to target six ORFs from the rfb operon with varying levels of sequence polymorphism. They were tested both separately and multiplexed. Half of these primer pairs produced serovar-specific amplicons, allowing the identification of some specific serovars and also groups of serovars. It was shown that the serovar classification of Leptospira can be accessed by selective amplification of rfb operons in some cases, which may permit a parallel between the serological and the genomic classifications of Leptospira. As a conclusion, the selective amplification of rfb generated promising and already useful results, but it appears necessary to characterize a larger variety of Leptospira genomes or rfb operons to fully develop this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adler B, de la Pena-Moctezuma A (2009) Leptospira and leptospirosis. Vet Microbiol 140:287–296

    Article  PubMed  Google Scholar 

  2. Ahmed N, Devi SM, Valverde ML et al (2006) Multilocus sequence typing method for identification and genotypic classification of pathogenic Leptospira species. Ann Clin Microbiol Antimicrob 5:28

    Article  PubMed  Google Scholar 

  3. Ahmed A, Engelberts MF, Boer KR et al (2009) Development and validation of a real-time PCR for detection of pathogenic leptospira species in clinical materials. PLoS ONE 4:e7093

    Article  PubMed  Google Scholar 

  4. Bharti AR, Nally JE, Ricaldi JN et al (2003) Leptospirosis: a zoonotic disease of global importance. Lancet Infect Dis 3:757–771

    Article  PubMed  Google Scholar 

  5. Brenner DJ, Kaufmann AF, Sulzer KR et al (1999) Further determination of DNA relatedness between serogroups and serovars in the family Leptospiraceae with a proposal for Leptospira alexanderi sp. nov. and four new Leptospira genomospecies. Int J Syst Bacteriol 49(Pt 2):839–858

    Article  CAS  PubMed  Google Scholar 

  6. Cai CS, Zhu YZ, Zhong Y et al (2010) Development of O-antigen gene cluster-specific PCRs for rapid typing six epidemic serogroups of Leptospira in China. BMC Microbiol 10:67

    Article  PubMed  Google Scholar 

  7. Cerqueira GM, Picardeau M (2009) A century of Leptospira strain typing. Infect Genet Evol 9:760–768

    Article  CAS  PubMed  Google Scholar 

  8. Corney BG, Colley J, Djordjevic SP et al (1993) Rapid identification of some Leptospira isolates from cattle by random amplified polymorphic DNA fingerprinting. J Clin Microbiol 31:2927–2932

    CAS  PubMed  Google Scholar 

  9. Corney BG, Slack AT, Symonds ML et al (2008) Leptospira weilii serovar Topaz, a new member of the Tarassovi serogroup isolated from a bovine source in Queensland, Australia. Int J Syst Evol Microbiol 58:2249–2252

    Article  CAS  PubMed  Google Scholar 

  10. de la Pena-Moctezuma A, Bulach DM, Adler B (2001) Genetic differences among the LPS biosynthetic loci of serovars of Leptospira interrogans and Leptospira borgpetersenii. FEMS Immunol Med Microbiol 31:73–81

    PubMed  Google Scholar 

  11. Djadid ND, Ganji ZF, Gouya MM et al (2009) A simple and rapid nested polymerase chain reaction-restriction fragment length polymorphism technique for differentiation of pathogenic and nonpathogenic Leptospira spp. Diagn Microbiol Infect Dis 63:251–256

    Article  CAS  PubMed  Google Scholar 

  12. Faine S, Adler B, Bolin C et al (1999) Leptospira and Leptospirosis, 2nd edn. MediSci, Melbourne

    Google Scholar 

  13. Galloway RL, Levett PN (2008) Evaluation of a modified pulsed-field gel electrophoresis approach for the identification of Leptospira serovars. Am J Trop Med Hyg 78:628–632

    CAS  PubMed  Google Scholar 

  14. Gouveia EL, Metcalfe J, de Carvalho AL et al (2008) Leptospirosis-associated severe pulmonary hemorrhagic syndrome, Salvador, Brazil. Emerg Infect Dis 14:505–508

    Article  PubMed  Google Scholar 

  15. Koizumi N, Watanabe H (2005) Leptospirosis vaccines: past, present, and future. J Postgrad Med 51:210–214

    CAS  PubMed  Google Scholar 

  16. Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  17. Leon A, Pronost S, Fortier G et al (2010) Multilocus sequence analysis for typing Leptospira interrogans and Leptospira kirschneri. J Clin Microbiol 48:581–585

    Article  CAS  PubMed  Google Scholar 

  18. Levett PN (2001) Leptospirosis. Clin Microbiol Rev 14:296–326

    Article  CAS  PubMed  Google Scholar 

  19. Majed Z, Bellenger E, Postic D et al (2005) Identification of variable-number tandem-repeat loci in Leptospira interrogans sensu stricto. J Clin Microbiol 43:539–545

    Article  CAS  PubMed  Google Scholar 

  20. Matthias MA, Ricaldi JN, Cespedes M et al (2008) Human leptospirosis caused by a new, antigenically unique Leptospira associated with a Rattus species reservoir in the Peruvian Amazon. PLoS Negl Trop Dis 2:e213

    Article  PubMed  Google Scholar 

  21. McBride AJ, Athanazio DA, Reis MG et al (2005) Leptospirosis. Curr Opin Infect Dis 18:376–386

    Article  PubMed  Google Scholar 

  22. Morey RE, Galloway RL, Bragg SL et al (2006) Species-specific identification of Leptospiraceae by 16S rRNA gene sequencing. J Clin Microbiol 44:3510–3516

    Article  CAS  PubMed  Google Scholar 

  23. Perolat P, Chappel RJ, Adler B et al (1998) Leptospira fainei sp. nov., isolated from pigs in Australia. Int J Syst Bacteriol 48(Pt 3):851–858

    Article  CAS  PubMed  Google Scholar 

  24. Postic D, Riquelme-Sertour N, Merien F et al (2000) Interest of partial 16S rDNA gene sequences to resolve heterogeneities between Leptospira collections: application to L. meyeri. Res Microbiol 151:333–341

    Article  CAS  PubMed  Google Scholar 

  25. Ramadass P, Jarvis BD, Corner RJ et al (1992) Genetic characterization of pathogenic Leptospira species by DNA hybridization. Int J Syst Bacteriol 42:215–219

    Article  CAS  PubMed  Google Scholar 

  26. Ramadass P, Meerarani S, Venkatesha MD et al (1997) Characterization of leptospiral serovars by randomly amplified polymorphic DNA fingerprinting. Int J Syst Bacteriol 47:575–576

    Article  CAS  PubMed  Google Scholar 

  27. Salaun L, Merien F, Gurianova S et al (2006) Application of multilocus variable-number tandem-repeat analysis for molecular typing of the agent of leptospirosis. J Clin Microbiol 44:3954–3962

    Article  CAS  PubMed  Google Scholar 

  28. Sambrook J, Russell RW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  29. Slack AT, Kalambaheti T, Symonds ML et al (2008) Leptospira wolffii sp. nov., isolated from a human with suspected leptospirosis in Thailand. Int J Syst Evol Microbiol 58:2305–2308

    Article  CAS  PubMed  Google Scholar 

  30. Slack AT, Khairani-Bejo S, Symonds ML et al (2009) Leptospira kmetyi sp. nov., isolated from an environmental source in Malaysia. Int J Syst Evol Microbiol 59:705–708

    Article  CAS  PubMed  Google Scholar 

  31. Turk N, Milas Z, Mojcec V et al (2009) Molecular analysis of Leptospira spp. isolated from humans by restriction fragment length polymorphism, real-time PCR and pulsed-field gel electrophoresis. FEMS Microbiol Lett 300:174–179

    Article  CAS  PubMed  Google Scholar 

  32. Valverde ML, Ramirez JM, Montes de Oca LG et al (2008) Arenal, a new Leptospira serovar of serogroup Javanica, isolated from a patient in Costa Rica. Infect Genet Evol 8:529–533

    Article  Google Scholar 

  33. Victoria B, Ahmed A, Zuerner RL et al (2008) Conservation of the S10-spc-alpha locus within otherwise highly plastic genomes provides phylogenetic insight into the genus Leptospira. PLoS ONE 3:e2752

    Article  PubMed  Google Scholar 

  34. Yasuda PH, Steigerwalt AG, Sulzer KR et al (1987) Deoxyribonucleic-acid relatedness between serogroups and serovars in the family Leptospiraceae with proposals for 7 new leptospira species. Int J Syst Bacteriol 37:407–415

    Article  Google Scholar 

Download references

Acknowledgments

We thank FAPESP, CNPq, and Fundação Butantan for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo L. Ho.

Additional information

Josefa Bezerra da Silva and Eneas Carvalho have contributed equally to this work.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00284-010-9772-5

Electronic supplementary material

Below is the link to the electronic supplementary material.

284_2010_9738_MOESM1_ESM.docx

Individual PCR amplification of LPS biosynthesis loci fragments using a subset of four primer pairs (pair 37–420, 10–268, 14–201, and 37–110), across several L. interrogans serovars. The use of these primer pairs produced amplicons in serovars in which it was not predicted to occur (according to the alignments performed) and also non-specific amplicons, whose size are incompatible with the expected amplicon size (indicated by an arrow). Serovars in which unpredicted amplicons occurred are presented in bold, and serovars in which non-specific amplicons occurred are italicized; otherwise, when the predicted result was obtained for the serovar, it was underlined. An approximate size marker (bp) is shown for each figure subset. Serovar Hardjo belongs to subtype Hardjoprajitno. (DOCX 446 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bezerra da Silva, J., Carvalho, E., Hartskeerl, R.A. et al. Evaluation of the Use of Selective PCR Amplification of LPS Biosynthesis Genes for Molecular Typing of Leptospira at the Serovar Level. Curr Microbiol 62, 518–524 (2011). https://doi.org/10.1007/s00284-010-9738-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9738-7

Keywords

Navigation