Skip to main content

Advertisement

Log in

Low Contents of Carbon and Nitrogen in Highly Abundant Proteins: Evidence of Selection for the Economy of Atomic Composition

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Proteins that assimilate particular elements were found to avoid using amino acids containing the element, which indicates that the metabolic constraints of amino acids may influence the evolution of proteins. We suspected that low contents of carbon, nitrogen, and sulfur may also be selected for economy in highly abundant proteins that consume large amounts of the resources of cells. By analyzing recently available proteomic data in Escherichia coli, Saccharomyces cerevisiae, and Schizosaccharomyces pombe, we found that at least the carbon and nitrogen contents in amino acid side chains are negatively correlated with protein abundance. An amino acid with a high number of carbon atoms in its side chain generally requires relatively more energy for its synthesis. Thus, it may be selected against in highly abundant proteins either because of economy in building blocks or because of economy in energy. Previous studies showed that highly abundant proteins preferentially use cheap (in terms of energy) amino acids. We found that the carbon content is still negatively correlated with protein abundance after controlling for the energetic cost of the amino acids. However, the negative correlation between protein abundance and energetic cost disappeared after controlling for carbon content. Building blocks seem to be more restricted than energy. It seems that the amino acid sequences of highly abundant proteins have to compromise between optimization for their biological functions and reducing the consumption of limiting resources. By contrast, the amino acid sequences of weakly expressed proteins are more likely to be optimized for their biological functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Akashi H (2003) Translational selection and yeast proteome evolution. Genetics 164:1291–1303

    PubMed  CAS  Google Scholar 

  • Akashi H, Gojobori T (2002) Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc Natl Acad Sci USA 99:3695–3700

    Article  PubMed  CAS  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genet 25:25–29

    Article  PubMed  CAS  Google Scholar 

  • Baudouin-Cornu P, Surdin-Kerjan Y, Marliere P, Thomas D (2001) Molecular evolution of protein atomic composition. Science 293:297–300

    Article  PubMed  CAS  Google Scholar 

  • Baudouin-Cornu P, Schuerer K, Marliere P, Thomas D (2004) Intimate evolution of proteins—proteome atomic content correlates with genome base composition. J Biol Chem 279:5421–5428

    Article  PubMed  CAS  Google Scholar 

  • Belle A, Tanay A, Bitincka L, Shamir R, O’Shea EK (2006) Quantification of protein half-lives in the budding yeast proteome. Proc Natl Acad Sci USA 103:13004–13009

    Article  PubMed  CAS  Google Scholar 

  • Beyer A, Hollunder J, Nasheuer HP, Wilhelm T (2004) Post-transcriptional expression regulation in the yeast Saccharomyces cerevisiae on a genomic scale. Mol Cell Proteomics 3:1083–1092

    Article  PubMed  CAS  Google Scholar 

  • Boer VM, de Winde JH, Pronk JT, Piper MDW (2003) The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur. J Biol Chem 278:3265–3274

    Article  PubMed  CAS  Google Scholar 

  • Bragg JG, Wagner A (2007) Protein carbon content evolves in response to carbon availability and may influence the fate of duplicated genes. Proc R Soc B 274:1063–1070

    Article  PubMed  CAS  Google Scholar 

  • Bragg JG, Wagner A (2009) Protein material costs: single atoms can make an evolutionary difference. Trends Genet 25:5–8. (doi:10.1016/j.tig.2008.10.007)

    PubMed  Google Scholar 

  • Brockmann R, Beyer A, Heinisch JJ, Wilhelm T (2007) Posttranscriptional expression regulation: what determines translation rates? PLoS Comput Biol 3:531–539

    Article  CAS  Google Scholar 

  • Craig CL, Weber RS (1998) Selection costs of amino acid substitutions in ColE1 and ColIa gene clusters harbored by Escherichia coli. Mol Biol Evol 15:774–776

    PubMed  CAS  Google Scholar 

  • Cuhel RL, Taylor CD, Jannasch HW (1981) Assimilatory sulfur metabolism in marine microorganisms: Sulfur metabolism, growth, and protein synthesis of Pseudomonas halodurans and Alteromonas luteo-violaceus during sulfate limitation. Arch Microbiol 130:1–7

    Article  CAS  Google Scholar 

  • Elser JJ, Fagan WF, Subramanian S, Kumar S (2006) Signatures of ecological resource availability in the animal and plant proteomes. Mol Biol Evol 23:1946–1951

    Article  PubMed  CAS  Google Scholar 

  • Fauchon M, Lagniel G, Aude JC, Lombardia L, Soularue P, Petat C, Marguerie G, Sentenac A, Werner M, Labarre J (2002) Sulfur sparing in the yeast proteome in response to sulfur demand. Mol Cell 9:713–723

    Article  PubMed  CAS  Google Scholar 

  • Futcher B, Latter GI, Monardo P, McLaughlin CS, Garrels JI (1999) A sampling of the yeast proteome. Mol Cell Biol 19:7357–7368

    PubMed  CAS  Google Scholar 

  • Ghaemmaghami S, Huh W, Bower K, Howson RW, Belle A, Dephoure N, O’Shea EK, Weissman JS (2003) Global analysis of protein expression in yeast. Nature 425:737–741

    Article  PubMed  CAS  Google Scholar 

  • Greenbaum D, Jansen R, Gerstein M (2002) Analysis of mRNA expression and protein abundance data: an approach for the comparison of the enrichment of features in the cellular population of proteins and transcripts. Bioinformatics 18:585–596

    Article  PubMed  CAS  Google Scholar 

  • Griffin TJ, Gygi SP, Ideker T, Rist B, Eng J, Hood L, Aebersold R (2002) Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol Cell Proteomics 1:323–333

    Article  PubMed  CAS  Google Scholar 

  • Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730

    PubMed  CAS  Google Scholar 

  • Heizer EM Jr, Raiford DW, Raymer ML, Doom TE, Miller RV, Krane DE (2006) Amino acid cost and codon-usage biases in 6 prokaryotic genomes: a whole-genome analysis. Mol Biol Evol 23:1670–1680

    Article  PubMed  CAS  Google Scholar 

  • Hertz-Fowler C, Peacock CS, Wood V, Aslett M, Kerhornou A, Mooney P, Tivey A, Berriman M, Hall N, Rutherford K, Parkhill J, Ivens AC, Rajandream MA, Barrell B (2004) GeneDB: a resource for prokaryotic and eukaryotic organisms. Nucleic Acids Res. 32:D339–D343

    Article  PubMed  CAS  Google Scholar 

  • Hong EL, Balakrishnan R, Dong Q, Christie KR, Park J, Binkley G, Costanzo MC, Dwight SS, Engel SR, Fisk DG, Hirschman JE, Hitz BC, Krieger CJ, Livstone MS, Miyasato SR, Nash RS, Oughtred R, Skrzypek MS, Weng S, Wong ED, Zhu KK, Dolinski K, Botstein D, Cherry JM (2008) Gene Ontology annotations at SGD: new data sources and annotation methods. Nucleic Acids Res 36:D577–D581

    Article  PubMed  CAS  Google Scholar 

  • Ishihama Y, Schmidt T, Rappsilber J, Mann M, Hartl FU, Kerner M, Frishman D (2008) Protein abundance profiling of the Escherichia coli cytosol. BMC Genomics 9:102

    Article  PubMed  Google Scholar 

  • Kaplan R, Apirion D (1975) The fate of ribosomes in Escherichia coli cells starved for a carbon source. J Biol Chem 250:1854–1863

    PubMed  CAS  Google Scholar 

  • Kolkman A, Daran-Lapujade P, Fullaondo A, Olsthoorn MMA, Pronk JT, Slijper M, Heck AJR (2006) Proteome analysis of yeast response to various nutrient limitations. Mol Syst Biol 2:2006.0026

    Google Scholar 

  • Kraft C, Deplazes A, Sohrmann M, Peter M (2008) Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol 10:602–610

    Article  PubMed  CAS  Google Scholar 

  • Liu HB, Sadygov RG, Yates JR (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76:4193–4201

    Article  PubMed  CAS  Google Scholar 

  • Lobry JR, Gautier C (1994) Hydrophobicity, expressivity and aromaticity are the major trends of amino-acid usage in 999 Escherichia coli chromosome-encoded genes. Nucleic Acids Res 22:3174–3180

    Article  PubMed  CAS  Google Scholar 

  • Lv J, Li N, Niu D-K (2008) Association between the availability of environmental resources and the atomic composition of organismal proteomes: evidence from Prochlorococcus strains living at different depths. Biochem Biophys Res Commun 375:241–246

    Article  PubMed  Google Scholar 

  • Mazel D, Marliere P (1989) Adaptive eradication of methionine and cysteine from cyanobacterial light-harvesting proteins. Nature 341:245–248

    Article  PubMed  CAS  Google Scholar 

  • Nakatogawa H, Ohsumi Y (2008) Starved cells eat ribosomes. Nature Cell Biol 10:505–507

    Article  PubMed  CAS  Google Scholar 

  • Nie L, Wu G, Zhang W (2006) Correlation between mRNA and protein abundance in Desulfovibrio vulgaris: a multiple regression to identify sources of variations. Biochem Biophys Res Commun 339:603–610

    Article  PubMed  CAS  Google Scholar 

  • Pardee AB (1966) Purification and properties of a sulfate-binding protein from Salmonella typhimurium. J Biol Chem 241:5886–5892

    PubMed  CAS  Google Scholar 

  • Schmidt MW, Houseman A, Ivanov AR, Wolf DA (2007) Comparative proteomic and transcriptomic profiling of the fission yeast Schizosaccharomyces pombe. Mol Syst Biol 3:79

    Article  PubMed  Google Scholar 

  • Swire J (2007) Selection on synthesis cost affects interprotein amino acid usage in all three domains of life. J Mol Evol 64:558–571

    Article  PubMed  CAS  Google Scholar 

  • The UniProt Consortium (2008) The Universal Protein Resource (UniProt). Nucleic Acids Res 36:D190–D195

    Article  Google Scholar 

  • Wagner A (2005) Energy constraints on the evolution of gene expression. Mol Biol Evol 22:1365–1374

    Article  PubMed  CAS  Google Scholar 

  • Wu XM, Zhu L, Guo J, Fu C, Zhou HJ, Dong D, Li ZB, Zhang DY, Lin K (2006) SPIDer: Saccharomyces protein-protein interaction database. BMC Bioinformatics 7:S16

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank anonymous reviewers for very valuable comments on the manuscript and Xiaomei Wu, Jie Guo, and Yi-Fei Huang for their help. This study was supported by Program NCET-07-0094 and Beijing Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deng-Ke Niu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 243 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, N., Lv, J. & Niu, DK. Low Contents of Carbon and Nitrogen in Highly Abundant Proteins: Evidence of Selection for the Economy of Atomic Composition. J Mol Evol 68, 248–255 (2009). https://doi.org/10.1007/s00239-009-9199-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-009-9199-4

Keywords

Navigation