Skip to main content

Advertisement

Log in

Informative genomic microsatellite markers for efficient genotyping applications in sugarcane

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Genomic microsatellite markers are capable of revealing high degree of polymorphism. Sugarcane (Saccharum sp.), having a complex polyploid genome requires more number of such informative markers for various applications in genetics and breeding. With the objective of generating a large set of microsatellite markers designated as Sugarcane Enriched Genomic MicroSatellite (SEGMS), 6,318 clones from genomic libraries of two hybrid sugarcane cultivars enriched with 18 different microsatellite repeat-motifs were sequenced to generate 4.16 Mb high-quality sequences. Microsatellites were identified in 1,261 of the 5,742 non-redundant clones that accounted for 22% enrichment of the libraries. Retro-transposon association was observed for 23.1% of the identified microsatellites. The utility of the microsatellite containing genomic sequences were demonstrated by higher primer designing potential (90%) and PCR amplification efficiency (87.4%). A total of 1,315 markers including 567 class I microsatellite markers were designed and placed in the public domain for unrestricted use. The level of polymorphism detected by these markers among sugarcane species, genera, and varieties was 88.6%, while cross-transferability rate was 93.2% within Saccharum complex and 25% to cereals. Cloning and sequencing of size variant amplicons revealed that the variation in the number of repeat-units was the main source of SEGMS fragment length polymorphism. High level of polymorphism and wide range of genetic diversity (0.16–0.82 with an average of 0.44) assayed with the SEGMS markers suggested their usefulness in various genotyping applications in sugarcane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aitken KS, Jackson PA, McIntyre CL (2005) A combination of AFLP and SSR markers provides extensive map coverage and identification of hom(oe)ologous linkage groups in sugarcane. Theor Appl Genet 110:789–801

    Article  PubMed  CAS  Google Scholar 

  • Anderson JA, Churchill GA, Autrique JE, Tanksley SD, Sorrells ME (1993) Optimizing parental selection for genetic linkage maps. Genome 36:181–186

    Article  PubMed  CAS  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Bennetzen JL (2000) Transposable element contributions to plant genome evolution. Plant Mol Biol 42:251–269

    Article  PubMed  CAS  Google Scholar 

  • Bhattramakki D, Dong J, Chhabra K, Hart GE (2000) An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome 43:988–1002

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Temnykh S, Xu Y, Cho YG, McCouch SR (1997) Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.). Theor Appl Genet 95:553–567

    Article  CAS  Google Scholar 

  • Cho YG, Ishii T, Temnykh S, Chen X, Lipovich L, Park WD, Ayres N, Cartinhour S, McCouch SR (2000) Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theor Appl Genet 100:713–722

    Article  CAS  Google Scholar 

  • Cordeiro GM, Maguire TL, Edwards KJ, Henry RJ (1999) Optimization of a microsatellite enrichment technique in Saccharum spp. Plant Mol Biol Rep 17:225–229

    Article  CAS  Google Scholar 

  • Cordeiro GM, Taylor GO, Henry RJ (2000) Characterization of microsatellite markers from sugarcane (Saccharum spp.), a highly polyploid species. Plant Sci 155:161–168

    Article  PubMed  CAS  Google Scholar 

  • Cordeiro GM, Casu R, McIntyre CL, Manners JM, Henry RJ (2001) Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross-transferable to Erianthus and Sorghum. Plant Sci 160:1115–1123

    Article  PubMed  CAS  Google Scholar 

  • D’Hont A, Paulet F, Glaszmann JC (1993) Oligoclonal interspecific origin of ‘North Indian’ and ‘Chinese’ sugarcanes. Chromosome Res 10:253–262

    Article  Google Scholar 

  • Daniels J, Smith P, Panton N, Williams CA (1975) The origin of the genus Saccharum. Sugarcane Breed Newsl 36:24–39

    Google Scholar 

  • Edwards KJ, Barker JHA, Daly A, Jones C, Karp A (1996) Microsatellite libraries enriched for several microsatellite sequences in plants. Biotechniques 20:758–760

    PubMed  CAS  Google Scholar 

  • Goldstein DB, Schlotterer C (1999) Microsatellites: evolution and applications. Oxford University Press, Oxford

    Google Scholar 

  • IRGSP (2005) The map based sequence of rice genome. Nature 436:793–800

    Google Scholar 

  • Jaccard P (1908) Nouvelles recherché sur la distribution florale. Bull Soc Vaudoise Sci Nat 44:223–270

    Google Scholar 

  • Liu ZW, Biyashev RB, Saghai-Maroof MA (1996) Development of simple sequence repeat DNA markers and their integration into a barley linkage map. Theor Appl Genet 93:869–876

    Article  CAS  Google Scholar 

  • Matsuoka Y, Mitchell SE, Kresovich S, Goodman M, Doebley J (2002) Micosatellites in Zea-variability, patterns of mutations, and uses for evolutionary studies. Theor Appl Genet 104:436–450

    Article  PubMed  CAS  Google Scholar 

  • Nair NV, Selvi A, Srinivasan TV, Pushpalatha KN (2002) Molecular diversity in Indian sugarcane cultivars as revealed by randomly amplified DNA polymorphisms. Euphytica 127:219–225

    Article  CAS  Google Scholar 

  • Parida SK, Rajkumar KA, Dalal V, Singh NK, Mohapatra T (2006) Unigene derived microsatellite markers for the cereal genomes. Theor Appl Genet 112:808–817

    Article  PubMed  CAS  Google Scholar 

  • Pestsova E, Ganal MW, Roder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697

    Article  PubMed  CAS  Google Scholar 

  • Pinto LR, Oliveira KM, Ulian EC, Garcia AA, deSouza AP (2004) Survey in the sugarcane expressed sequence tag database (SUCEST) for simple sequence repeats. Genome 47:795–804

    Article  PubMed  CAS  Google Scholar 

  • Pinto LR, Oliveira KM, Marconi T, Garcia AAF, Ulian EC, deSouza AP (2006) Characterization of novel sugarcane expressed sequence tag microsatellites and their comparison with genomic SSRs. Plant Breed 125:378–384

    Article  CAS  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  • Ramsay L, Macaulaya M, degli Ivanissevichb S, MacLeana K, Cardlea L, Fullera J, Edwardsc KJ, Tuvessond S, Morganteb M, Massarie A, Maestrie E, Marmirolie N, Sjakstef T, Ganalg M, Powella W, Waugha R (2000) A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005

    PubMed  CAS  Google Scholar 

  • Roder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  CAS  Google Scholar 

  • Rossi M, Araujo PG, Sluys MV (2001) Survey of transposable elements in sugarcane expressed sequence tags (ESTs). Gen Mol Biol 24:147–154

    CAS  Google Scholar 

  • Rossi M, Araujo PG, Paulet F, Garsmeur O, Dias VM, Chen H, Van-Sluys MA, D’Hont A (2003) Genomic distribution and characterization of EST-derived resistance gene analogs (RGAs) in sugarcane. Mol Genet Genomics 269:406–419

    Article  PubMed  CAS  Google Scholar 

  • Selvi A, Nair NV, Balasundaram N, Mohapatra T (2003) Evaluation of maize microsatellite markers for genetic diversity analysis and fingerprinting in sugarcane. Genome 46:394–403

    Article  PubMed  CAS  Google Scholar 

  • Selvi A, Nair NV, Noyer JL, Singh NK, Balasundaram N, Bansal KC, Koundal KR, Mohapatra T (2005) Genomic constitution and genetic relationship among the tropical and subtropical Indian sugarcane cultivars revealed by AFLP. Crop Sci 45:1750–1757

    Article  CAS  Google Scholar 

  • Selvi A, Nair NV, Noyer JL, Singh NK, Balasundaram N, Bansal KC, Koundal KR, Mohapatra T (2006) AFLP analysis of the phenetic organization and genetic diversity in the sugarcane complex, Saccharum and Erianthus. Genet Resour Crop Evol 53:831–842

    Article  CAS  Google Scholar 

  • Sethy NK, Shokeen B, Edwards KJ, Bhatia S (2006) Development of microsatellite markers and analysis of intraspecific genetic variability in chickpea (Cicer arietinum L.). Theor Appl Genet 112:1416–1428

    Article  PubMed  CAS  Google Scholar 

  • Sharopova N, McMullen MD, Schultz L, Schroeder S, Sanchez-Villeda H, Davis G, Coe EH (2002) Development and mapping of SSR markers for maize. Plant Mol Biol 48:463–481

    Article  PubMed  CAS  Google Scholar 

  • Temnykh S, Declerk G, Lukashover A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length-variation, transposon associations and genetic marker potential. Genome Res 11:1441–1452

    Article  PubMed  CAS  Google Scholar 

  • Yap I, Nelson RJ (1996) Winboot: a program for performing bootstrap analysis of binary data to determine the confidence limits of UPGMA-based dendrograms. IRRI Discussion paper series no. 14. International Rice Research Institute, Manila, Philippines

Download references

Acknowledgments

The work presented in the manuscript was funded by the Department of Biotechnology (DBT), Government of India. The authors thank the Institute of Plant Genetics and Crop Research (IPK) for the availability of microsatellite search tool MISA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trilochan Mohapatra.

Additional information

Communicated by A. Kilian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary figures (DOC 117 kb)

Supplementary tables (DOC 1910 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parida, S.K., Kalia, S.K., Kaul, S. et al. Informative genomic microsatellite markers for efficient genotyping applications in sugarcane. Theor Appl Genet 118, 327–338 (2009). https://doi.org/10.1007/s00122-008-0902-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-008-0902-4

Keywords

Navigation