Skip to main content
Log in

Role of mitochondrial lipids in guiding fission and fusion

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Clinically important links have been established between mitochondrial function and cardiac physiology and disease in the context of signaling mechanisms, energy production, and muscle cell development. The proteins and processes that drive mitochondrial fusion and fission are now known to have emergent functions in intracellular calcium homeostasis, apoptosis, vascular smooth muscle cell proliferation, myofibril organization, and Notch-driven cell differentiation, all key issues in cardiac disease. Moreover, decreasing fission may confer protection against ischemic heart disease, particularly in the setting of obesity, diabetes, and heart failure. The importance of lipids in controlling mitochondrial fission and fusion is increasingly becoming appreciated. Roles for the bulk and signaling lipids cardiolipin, phosphatidylethanolamine, phosphatidic acid, diacylglycerol, and lysophosphatidic acid and the enzymes that synthesize or metabolize them in the control of mitochondrial shape and function are reviewed here. A number of diseases have been linked to loss-of-function alleles for a subset of the enzymes, emphasizing the importance of the lipid environment in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Braschi E, McBride HM (2010) Mitochondria and the culture of the Borg: understanding the integration of mitochondrial function within the reticulum, the cell, and the organism. Bioessays 32(11):958–966

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Kasahara A, Scorrano L (2014) Mitochondria: from cell death executioners to regulators of cell differentiation. Trends Cell Biol. doi:10.1016/j.tcb.2014.08.005

    PubMed  Google Scholar 

  3. Hall AR, Burke N, Dongworth RK, Hausenloy DJ (2014) Mitochondrial fusion and fission proteins: novel therapeutic targets for combating cardiovascular disease. Br J Pharmacol 171(8):1890–1906

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337(6098):1062–1065

    Article  CAS  PubMed  Google Scholar 

  5. Osman C, Voelker DR, Langer T (2011) Making heads or tails of phospholipids in mitochondria. J Cell Biol 192(1):7–16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Patil VA, Greenberg ML (2013) Cardiolipin-mediated cellular signaling. Adv Exp Med Biol 991:195–213

    Article  CAS  PubMed  Google Scholar 

  7. Unsay JD, Cosentino K, Subburaj Y, Garcia-Saez AJ (2013) Cardiolipin effects on membrane structure and dynamics. Langmuir 29(51):15878–15887

    Article  CAS  PubMed  Google Scholar 

  8. Palau F, Estela A, Pla-Martin D, Sanchez-Piris M (2009) The role of mitochondrial network dynamics in the pathogenesis of Charcot-Marie-Tooth disease. Adv Exp Med Biol 652:129–137

    Article  CAS  PubMed  Google Scholar 

  9. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90(1):207–258

    Article  CAS  PubMed  Google Scholar 

  10. Hickson-Bick DL, Sparagna GC, Buja LM, McMillin JB (2002) Palmitate-induced apoptosis in neonatal cardiomyocytes is not dependent on the generation of ROS. Am J Physiol Heart Circ Physiol 282(2):H656–H664

    CAS  PubMed  Google Scholar 

  11. Parra V, Eisner V, Chiong M, Criollo A, Moraga F, Garcia A, Hartel S, Jaimovich E, Zorzano A, Hidalgo C et al (2008) Changes in mitochondrial dynamics during ceramide-induced cardiomyocyte early apoptosis. Cardiovasc Res 77(2):387–397

    Article  CAS  PubMed  Google Scholar 

  12. Kuzmicic J, Parra V, Verdejo HE, Lopez-Crisosto C, Chiong M, Garcia L, Jensen MD, Bernlohr DA, Castro PF, Lavandero S (2014) Trimetazidine prevents palmitate-induced mitochondrial fission and dysfunction in cultured cardiomyocytes. Biochem Pharmacol 91(3):323–336

    Article  CAS  PubMed  Google Scholar 

  13. Chen H, Vermulst M, Wang YE, Chomyn A, Prolla TA, McCaffery JM, Chan DC (2010) Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 141(2):280–289

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Kasahara A, Cipolat S, Chen Y, Dorn GW 2nd, Scorrano L (2013) Mitochondrial fusion directs cardiomyocyte differentiation via calcineurin and Notch signaling. Science 342(6159):734–737

    Article  CAS  PubMed  Google Scholar 

  15. Zepeda R, Kuzmicic J, Parra V, Troncoso R, Pennanen C, Riquelme JA, Pedrozo Z, Chiong M, Sanchez G, Lavandero S (2014) Drp1 loss-of-function reduces cardiomyocyte oxygen dependence protecting the heart from ischemia-reperfusion injury. J Cardiovasc Pharmacol 63(6):477–487

    Article  CAS  PubMed  Google Scholar 

  16. Pennanen C, Parra V, Lopez-Crisosto C, Morales PE, Del Campo A, Gutierrez T, Rivera-Mejias P, Kuzmicic J, Chiong M, Zorzano A et al (2014) Mitochondrial fission is required for cardiomyocyte hypertrophy mediated by a Ca2+–calcineurin signaling pathway. J Cell Sci 127(Pt 12):2659–2671

    Article  CAS  PubMed  Google Scholar 

  17. Caffin F, Prola A, Piquereau J, Novotova M, David DJ, Garnier A, Fortin D, Alavi MV, Veksler V, Ventura-Clapier R et al (2013) Altered skeletal muscle mitochondrial biogenesis but improved endurance capacity in trained OPA1-deficient mice. J Physiol 591(Pt 23):6017–6037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Huang P, Altshuller YM, Chunqiu Hou J, Pessin JE, Frohman MA (2005) Insulin-stimulated plasma membrane fusion of Glut4 glucose transporter-containing vesicles is regulated by phospholipase D1. Mol Biol Cell 16:2614–2623

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Vicogne J, Vollenweider D, Smith JR, Huang P, Frohman MA, Pessin JE (2006) Asymmetric phospholipid distribution drives in vitro reconstituted SNARE-dependent membrane fusion. Proc Natl Acad Sci U S A 103(40):14761–14766

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Vitale N, Caumont AS, Chasserot-Golaz S, Du G, Wu S, Sciorra VA, Morris AJ, Frohman MA, Bader MF (2001) Phospholipase D1: a key factor for the exocytotic machinery in neuroendocrine cells. Embo J 20(10):2424–2434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Donaldson JG (2009) Phospholipase D in endocytosis and endosomal recycling pathways. Biochim Biophys Acta 1791(9):845–849

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Guo T, Gregg C, Boukh-Viner T, Kyryakov P, Goldberg A, Bourque S, Banu F, Haile S, Milijevic S, San KH et al (2007) A signal from inside the peroxisome initiates its division by promoting the remodeling of the peroxisomal membrane. J Cell Biol 177(2):289–303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Huang H, Gao Q, Peng XX, Choi S-Y, Sarma K, Ren H, Morris AJ, Frohman MA (2011) piRNA-associated germline nuage formation and spermatogenesis require MitoPLD pro-fusogenic mitochondrial-surface lipid signaling. Dev Cell 20:376–387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Montessuit S, Somasekharan SP, Terrones O, Lucken-Ardjomande S, Herzig S, Schwarzenbacher R, Manstein DJ, Bossy-Wetzel E, Basanez G, Meda P et al (2010) Membrane remodeling induced by the dynamin-related protein Drp1 stimulates Bax oligomerization. Cell 142(6):889–901

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Macdonald PJ, Stepanyants N, Mehrotra N, Mears JA, Qi X, Sesaki H, Ramachandran R (2014) A dimeric equilibrium intermediate nucleates Drp1 reassembly on mitochondrial membranes for fission. Mol Biol Cell 25(12):1905–1915

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Baba T, Kashiwagi Y, Arimitsu N, Kogure T, Edo A, Maruyama T, Nakao K, Nakanishi H, Kinoshita M, Frohman MA et al (2014) Phosphatidic acid (PA)-preferring phospholipase A1 regulates mitochondrial dynamics. J Biol Chem. doi:10.1074/jbc.M113.531921

    Google Scholar 

  27. Choi SY, Huang P, Jenkins GM, Chan DC, Schiller J, Frohman MA (2006) A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nat Cell Biol 8(11):1255–1262

    Article  CAS  PubMed  Google Scholar 

  28. Stavru F, Palmer AE, Wang C, Youle RJ, Cossart P (2013) Atypical mitochondrial fission upon bacterial infection. Proc Natl Acad Sci U S A 110(40):16003–16008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Ardail D, Privat JP, Egret-Charlier M, Levrat C, Lerme F, Louisot P (1990) Mitochondrial contact sites. Lipid composition and dynamics. J Biol Chem 265(31):18797–18802

    CAS  PubMed  Google Scholar 

  30. Schlattner U, Tokarska-Schlattner M, Rousseau D, Boissan M, Mannella C, Epand R, Lacombe ML (2014) Mitochondrial cardiolipin/phospholipid trafficking: the role of membrane contact site complexes and lipid transfer proteins. Chem Phys Lipids 179:32–41

    Article  CAS  PubMed  Google Scholar 

  31. DeVay RM, Dominguez-Ramirez L, Lackner LL, Hoppins S, Stahlberg H, Nunnari J (2009) Coassembly of Mgm1 isoforms requires cardiolipin and mediates mitochondrial inner membrane fusion. J Cell Biol 186(6):793–803

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Ugarte-Uribe B, Mueller HM, Otsuki M, Nickel W, Garcia-Saez AJ (2014) Dynamin-related protein 1 (Drp1) promotes structural intermediates of membrane division. J Biol Chem. doi:10.1074/jbc.M114.575779

    PubMed  Google Scholar 

  33. Ban T, Heymann JA, Song Z, Hinshaw JE, Chan DC (2010) OPA1 disease alleles causing dominant optic atrophy have defects in cardiolipin-stimulated GTP hydrolysis and membrane tubulation. Hum Mol Genet 19(11):2113–2122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Mishra P, Carelli V, Manfredi G, Chan DC (2014) Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation. Cell Metab 19(4):630–641

    Article  CAS  PubMed  Google Scholar 

  35. Song Z, Chen H, Fiket M, Alexander C, Chan DC (2007) OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J Cell Biol 178(5):749–755

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Rujiviphat J, Meglei G, Rubinstein JL, McQuibban GA (2009) Phospholipid association is essential for dynamin-related protein Mgm1 to function in mitochondrial membrane fusion. J Biol Chem 284(42):28682–28686

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Schlattner U, Tokarska-Schlattner M, Ramirez S, Tyurina YY, Amoscato AA, Mohammadyani D, Huang Z, Jiang J, Yanamala N, Seffouh A et al (2013) Dual function of mitochondrial Nm23-H4 protein in phosphotransfer and intermembrane lipid transfer: a cardiolipin-dependent switch. J Biol Chem 288(1):111–121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Liu J, Chen J, Dai Q, Lee RM (2003) Phospholipid scramblase 3 is the mitochondrial target of protein kinase C delta-induced apoptosis. Cancer Res 63(6):1153–1156

    CAS  PubMed  Google Scholar 

  39. Liu J, Dai Q, Chen J, Durrant D, Freeman A, Liu T, Grossman D, Lee RM (2003) Phospholipid scramblase 3 controls mitochondrial structure, function, and apoptotic response. Mol Cancer Res 1(12):892–902

    CAS  PubMed  Google Scholar 

  40. Nakamura K, Nemani VM, Azarbal F, Skibinski G, Levy JM, Egami K, Munishkina L, Zhang J, Gardner B, Wakabayashi J et al (2011) Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein alpha-synuclein. J Biol Chem 286(23):20710–20726

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Joshi AS, Thompson MN, Fei N, Huttemann M, Greenberg ML (2012) Cardiolipin and mitochondrial phosphatidylethanolamine have overlapping functions in mitochondrial fusion in Saccharomyces cerevisiae. J Biol Chem 287(21):17589–17597

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Lutter M, Fang M, Luo X, Nishijima M, Xie X, Wang X (2000) Cardiolipin provides specificity for targeting of tBid to mitochondria. Nat Cell Biol 2(10):754–761

    Article  CAS  PubMed  Google Scholar 

  43. Lucken-Ardjomande S, Montessuit S, Martinou JC (2008) Contributions to Bax insertion and oligomerization of lipids of the mitochondrial outer membrane. Cell Death Differ 15(5):929–937

    Article  CAS  PubMed  Google Scholar 

  44. Sperka-Gottlieb CD, Hermetter A, Paltauf F, Daum G (1988) Lipid topology and physical properties of the outer mitochondrial membrane of the yeast, Saccharomyces cerevisiae. Biochim Biophys Acta 946(2):227–234

    Article  CAS  PubMed  Google Scholar 

  45. Tasseva G, Bai HD, Davidescu M, Haromy A, Michelakis E, Vance JE (2013) Phosphatidylethanolamine deficiency in mammalian mitochondria impairs oxidative phosphorylation and alters mitochondrial morphology. J Biol Chem 288(6):4158–4173

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Chan EY, McQuibban GA (2012) Phosphatidylserine decarboxylase 1 (Psd1) promotes mitochondrial fusion by regulating the biophysical properties of the mitochondrial membrane and alternative topogenesis of mitochondrial genome maintenance protein 1 (Mgm1). J Biol Chem 287(48):40131–40139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Xu Y, Sutachan JJ, Plesken H, Kelley RI, Schlame M (2005) Characterization of lymphoblast mitochondria from patients with Barth syndrome. Lab Invest 85(6):823–830

    Article  CAS  PubMed  Google Scholar 

  48. Ipsaro JJ, Haase AD, Knott SR, Joshua-Tor L, Hannon GJ (2012) The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis. Nature 491(7423):279–283

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Stuckey JA, Dixon JE (1999) Crystal structure of a phospholipase D family member. Nat Struct Biol 6(3):278–284

    Article  CAS  PubMed  Google Scholar 

  50. Ammar MR, Kassas N, Chasserot-Golaz S, Bader MF, Vitale N (2013) Lipids in regulated exocytosis: what are they doing? Front Endocrinol (Lausanne) 4:125

    Google Scholar 

  51. Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160(2):189–200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Muliyil S, Krishnakumar P, Narasimha M (2011) Spatial, temporal and molecular hierarchies in the link between death, delamination and dorsal closure. Development 138(14):3043–3054

    Article  CAS  PubMed  Google Scholar 

  53. Ohba Y, Sakuragi T, Kage-Nakadai E, Tomioka NH, Kono N, Imae R, Inoue A, Aoki J, Ishihara N, Inoue T et al (2013) Mitochondria-type GPAT is required for mitochondrial fusion. Embo J 32(9):1265–1279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Igal RA, Wang S, Gonzalez-Baro M, Coleman RA (2001) Mitochondrial glycerol phosphate acyltransferase directs the incorporation of exogenous fatty acids into triacylglycerol. J Biol Chem 276(45):42205–42212

    Article  CAS  PubMed  Google Scholar 

  55. Huang P, Altshuller YM, Hou JC, Pessin JE, Frohman MA (2005) Insulin-stimulated plasma membrane fusion of Glut4 glucose transporter-containing vesicles is regulated by phospholipase D1. Mol Biol Cell 16(6):2614–2623

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Yang J-S, Gad H, Lee S, Mironov A, Zhang L, Beznoussenko GV, Valente C, Turacchio G, Bonsra AN, Du G et al (2008) COPI vesicle fission: a role for phosphatidic acid and insight into Golgi maintenance. Nat Cell Biol 10:1146–1153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Mears JA, Lackner LL, Fang S, Ingerman E, Nunnari J, Hinshaw JE (2011) Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat Struct Mol Biol 18(1):20–26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK (2011) ER tubules mark sites of mitochondrial division. Science 334(6054):358–362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Korobova F, Ramabhadran V, Higgs HN (2013) An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 339(6118):464–467

    Article  CAS  PubMed  Google Scholar 

  60. Korobova F, Gauvin TJ, Higgs HN (2014) A role for myosin II in mammalian mitochondrial fission. Curr Biol 24(4):409–414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Itoh T, Hasegawa J, Tsujita K, Kanaho Y, Takenawa T (2009) The tyrosine kinase Fer is a downstream target of the PLD-PA pathway that regulates cell migration. Sci Signal 2(87):ra52

    PubMed  Google Scholar 

  62. Nishikimi A, Fukuhara H, Su W, Hongu T, Takasuga S, Mihara H, Cao Q, Sanematsu F, Kanai M, Hasegawa H et al (2009) Sequential regulation of DOCK2 dynamics by two phospholipids during neutrophil chemotaxis. Science 324(5925):384–387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Ito M, Feng J, Tsujino S, Inagaki N, Inagaki M, Tanaka J, Ichikawa K, Hartshorne DJ, Nakano T (1997) Interaction of smooth muscle myosin phosphatase with phospholipids. Biogeosciences 36(24):7607–7614

    CAS  Google Scholar 

  64. Du G, Frohman MA (2009) A lipid-signaled myosin phosphatase surge disperses cortical contractile force early in cell spreading. Mol Biol Cell 20:200–208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Abramovici H, Mojtabaie P, Parks RJ, Zhong XP, Koretzky GA, Topham MK, Gee SH (2009) Diacylglycerol kinase zeta regulates actin cytoskeleton reorganization through dissociation of Rac1 from RhoGDI. Mol Biol Cell 20(7):2049–2059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Ard R, Mulatz K, Abramovici H, Maillet JC, Fottinger A, Foley T, Byham MR, Iqbal TA, Yoneda A, Couchman JR et al (2012) Diacylglycerol kinase zeta regulates RhoA activation via a kinase-independent scaffolding mechanism. Mol Biol Cell 23(20):4008–4019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Chae M, Carman GM (2013) Characterization of the yeast actin patch protein App1p phosphatidate phosphatase. J Biol Chem 288(9):6427–6437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Bossard C, Bresson D, Polishchuk RS, Malhotra V (2007) Dimeric PKD regulates membrane fission to form transport carriers at the TGN. J Cell Biol 179(6):1123–1131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Malhotra V, Campelo F (2011) PKD regulates membrane fission to generate TGN to cell surface transport carriers. Cold Spring Harb Perspect Biol 3(2):a005280

    Article  PubMed Central  PubMed  Google Scholar 

  70. Dimmer KS, Navoni F, Casarin A, Trevisson E, Endele S, Winterpacht A, Salviati L, Scorrano L (2008) LETM1, deleted in Wolf-Hirschhorn syndrome is required for normal mitochondrial morphology and cellular viability. Hum Mol Genet 17(2):201–214

    Article  CAS  PubMed  Google Scholar 

  71. Brooks C, Wei Q, Cho SG, Dong Z (2009) Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J Clin Invest 119(5):1275–1285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Grohm J, Kim SW, Mamrak U, Tobaben S, Cassidy-Stone A, Nunnari J, Plesnila N, Culmsee C (2012) Inhibition of Drp1 provides neuroprotection in vitro and in vivo. Cell Death Differ 19(9):1446–1458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Ong SB, Subrayan S, Lim SY, Yellon DM, Davidson SM, Hausenloy DJ (2010) Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation 121(18):2012–2022

    Article  CAS  PubMed  Google Scholar 

  74. Yang CY, Frohman MA (2012) Mitochondria: signaling with phosphatidic acid. Int J Biochem Cell Biol 44(8):1346–1350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Papanicolaou KN, Ngoh GA, Dabkowski ER, O'Connell KA, Ribeiro RF Jr, Stanley WC, Walsh K (2012) Cardiomyocyte deletion of mitofusin-1 leads to mitochondrial fragmentation and improves tolerance to ROS-induced mitochondrial dysfunction and cell death. Am J Physiol Heart Circ Physiol 302(1):H167–H179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study is supported by NIH GM084251 and GM100109 to MAF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Frohman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frohman, M.A. Role of mitochondrial lipids in guiding fission and fusion. J Mol Med 93, 263–269 (2015). https://doi.org/10.1007/s00109-014-1237-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-014-1237-z

Keywords

Navigation