Skip to main content

Advertisement

Log in

Retrograde trafficking of AB5 toxins: mechanisms to therapeutics

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Bacterial AB5 toxins are a clinically relevant class of exotoxins that include several well-known members such as Shiga, cholera, and pertussis toxins. Infections with toxin-producing bacteria cause devastating human diseases that affect millions of individuals each year and have no definitive medical treatment. The molecular targets of AB5 toxins reside in the cytosol of infected cells, and the toxins reach the cytosol by trafficking through the retrograde membrane transport pathway that avoids degradative late endosomes and lysosomes. Focusing on Shiga toxin as the archetype member, we review recent advances in understanding the molecular mechanisms involved in the retrograde trafficking of AB5 toxins and highlight how these basic science advances are leading to the development of a promising new therapeutic approach based on inhibiting toxin transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Beddoe T, Paton AW, Le Nours J, Rossjohn J, Paton JC (2010) Structure, biological functions and applications of the AB5 toxins. Trends Biochem Sci 35:411–418

    Article  PubMed  CAS  Google Scholar 

  2. Merritt EA, Hol WG (1995) AB5 toxins. Curr Opin Struct Biol 5:165–171

    Article  PubMed  CAS  Google Scholar 

  3. Saenz JB, Doggett TA, Haslam DB (2007) Identification and characterization of small molecules that inhibit intracellular toxin transport. Infect Immun 75:4552–4561

    Article  PubMed  CAS  Google Scholar 

  4. Stechmann B, Bai SK, Gobbo E, Lopez R, Merer G, Pinchard S, Panigai L, Tenza D, Raposo G, Beaumelle B et al (2010) Inhibition of retrograde transport protects mice from lethal ricin challenge. Cell 141:231–242

    Article  PubMed  CAS  Google Scholar 

  5. Mukhopadhyay S, Linstedt AD (2012) Manganese blocks intracellular trafficking of Shiga toxin and protects against Shiga toxicosis. Science 335:332–335

    Article  PubMed  CAS  Google Scholar 

  6. Sandvig K, Bergan J, Dyve AB, Skotland T, Torgersen ML (2010) Endocytosis and retrograde transport of Shiga toxin. Toxicon 56:1181–1185

    Article  PubMed  CAS  Google Scholar 

  7. Sandvig K, Spilsberg B, Lauvrak SU, Torgersen ML, Van Iversen TG, Deurs B (2004) Pathways followed by protein toxins into cells. Int J Med Microbiol 293:483–490

    Article  PubMed  CAS  Google Scholar 

  8. Van Sandvig K, Deurs B (2005) Delivery into cells: lessons learned from plant and bacterial toxins. Genet Ther 12:865–872

    Article  CAS  Google Scholar 

  9. Van Sandvig K, Deurs B (2002) Membrane traffic exploited by protein toxins. Annu Rev Cell Dev Biol 18:1–24

    Article  PubMed  CAS  Google Scholar 

  10. Johannes L, Popoff V (2008) Tracing the retrograde route in protein trafficking. Cell 135:1175–1187

    Article  PubMed  CAS  Google Scholar 

  11. Johannes L, Wunder C (2011) Retrograde transport: two (or more) roads diverged in an endosomal tree? Traffic 12:956–962

    Article  PubMed  CAS  Google Scholar 

  12. Sandvig K, Garred O, Prydz K, Kozlov JV, Van Hansen SH, Deurs B (1992) Retrograde transport of endocytosed Shiga toxin to the endoplasmic reticulum. Nature 358:510–512

    Article  PubMed  CAS  Google Scholar 

  13. Mallard F, Antony C, Tenza D, Salamero J, Goud B, Johannes L (1998) Direct pathway from early/recycling endosomes to the Golgi apparatus revealed through the study of shiga toxin B-fragment transport. J Cell Biol 143:973–990

    Article  PubMed  CAS  Google Scholar 

  14. Jacewicz M, Clausen H, Nudelman E, Donohue-Rolfe A, Keusch GT (1986) Pathogenesis of shigella diarrhea. XI. Isolation of a shigella toxin-binding glycolipid from rabbit jejunum and HeLa cells and its identification as globotriaosylceramide. J Exp Med 163:1391–1404

    Article  PubMed  CAS  Google Scholar 

  15. Lingwood CA, Law H, Richardson S, Petric M, Brunton JL, De Grandis S, Karmali M (1987) Glycolipid binding of purified and recombinant Escherichia coli produced verotoxin in vitro. J Biol Chem 262:8834–8839

    PubMed  CAS  Google Scholar 

  16. Lindberg AA, Brown JE, Stromberg N, Westling-Ryd M, Schultz JE, Karlsson KA (1987) Identification of the carbohydrate receptor for Shiga toxin produced by Shigella dysenteriae type 1. J Biol Chem 262:1779–1785

    PubMed  CAS  Google Scholar 

  17. Okuda T, Tokuda N, Numata S, Ito M, Ohta M, Kawamura K, Wiels J, Urano T, Tajima O, Furukawa K et al (2006) Targeted disruption of Gb3/CD77 synthase gene resulted in the complete deletion of globo-series glycosphingolipids and loss of sensitivity to verotoxins. J Biol Chem 281:10230–10235

    Article  PubMed  CAS  Google Scholar 

  18. Obrig TG (2010) Escherichia coli Shiga toxin mechanisms of action in renal disease. Toxins (Basel) 2:2769–2794

    Article  CAS  Google Scholar 

  19. Boyd B, Lingwood C (1989) Verotoxin receptor glycolipid in human renal tissue. Nephron 51:207–210

    Article  PubMed  CAS  Google Scholar 

  20. Sandvig K, Olsnes S, Brown JE, Van Petersen OW, Deurs B (1989) Endocytosis from coated pits of Shiga toxin: a glycolipid-binding protein from Shigella dysenteriae 1. J Cell Biol 108:1331–1343

    Article  PubMed  CAS  Google Scholar 

  21. Lauvrak SU, Torgersen ML, Sandvig K (2004) Efficient endosome-to-Golgi transport of Shiga toxin is dependent on dynamin and clathrin. J Cell Sci 117:2321–2331

    Article  PubMed  CAS  Google Scholar 

  22. Nichols BJ, Kenworthy AK, Polishchuk RS, Lodge R, Roberts TH, Hirschberg K, Phair RD, Lippincott-Schwartz J (2001) Rapid cycling of lipid raft markers between the cell surface and Golgi complex. J Cell Biol 153:529–541

    Article  PubMed  CAS  Google Scholar 

  23. Saint-Pol A, Yelamos B, Amessou M, Mills IG, Dugast M, Tenza D, Schu P, Antony C, Mcmahon HT, Lamaze C et al (2004) Clathrin adaptor epsinR is required for retrograde sorting on early endosomal membranes. Dev Cell 6:525–538

    Article  PubMed  CAS  Google Scholar 

  24. Schapiro FB, Lingwood C, Furuya W, Grinstein S (1998) pH-independent retrograde targeting of glycolipids to the Golgi complex. Am J Physiol 274:C319–C332

    PubMed  CAS  Google Scholar 

  25. Mayor S, Pagano RE (2007) Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 8:603–612

    Article  PubMed  CAS  Google Scholar 

  26. Hehnly H, Longhini KM, Chen JL, Stamnes M (2009) Retrograde Shiga toxin trafficking is regulated by ARHGAP21 and Cdc42. Mol Biol Cell 20:4303–4312

    Article  PubMed  CAS  Google Scholar 

  27. Romer W, Berland L, Chambon V, Gaus K, Windschiegl B, Tenza D, Aly MR, Fraisier V, Florent JC, Perrais D et al (2007) Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 450:670–675

    Article  PubMed  Google Scholar 

  28. Glebov OO, Bright NA, Nichols BJ (2006) Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. Nat Cell Biol 8:46–54

    Article  PubMed  CAS  Google Scholar 

  29. Kirkham M, Fujita A, Chadda R, Nixon SJ, Kurzchalia TV, Sharma DK, Pagano RE, Hancock JF, Mayor S, Parton RG (2005) Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles. J Cell Biol 168:465–476

    Article  PubMed  CAS  Google Scholar 

  30. Torgersen ML, Skretting G, Van Deurs B, Sandvig K (2001) Internalization of cholera toxin by different endocytic mechanisms. J Cell Sci 114:3737–3747

    PubMed  CAS  Google Scholar 

  31. Utskarpen A, Massol R, Van Deurs B, Lauvrak SU, Kirchhausen T, Sandvig K (2010) Shiga toxin increases formation of clathrin-coated pits through Syk kinase. PLoS One 5:e10944

    Article  PubMed  Google Scholar 

  32. Lauvrak SU, Walchli S, Iversen TG, Slagsvold HH, Torgersen ML, Spilsberg B, Sandvig K (2006) Shiga toxin regulates its entry in a Syk-dependent manner. Mol Biol Cell 17:1096–1109

    Article  PubMed  CAS  Google Scholar 

  33. Wilde A, Beattie EC, Lem L, Riethof DA, Liu SH, Mobley WC, Soriano P, Brodsky FM (1999) EGF receptor signaling stimulates SRC kinase phosphorylation of clathrin, influencing clathrin redistribution and EGF uptake. Cell 96:677–687

    Article  PubMed  CAS  Google Scholar 

  34. Hehnly H, Sheff D, Stamnes M (2006) Shiga toxin facilitates its retrograde transport by modifying microtubule dynamics. Mol Biol Cell 17:4379–4389

    Article  PubMed  CAS  Google Scholar 

  35. Bujny MV, Popoff V, Johannes L, Cullen PJ (2007) The retromer component sorting nexin-1 is required for efficient retrograde transport of Shiga toxin from early endosome to the trans Golgi network. J Cell Sci 120:2010–2021

    Article  PubMed  CAS  Google Scholar 

  36. Popoff V, Mardones GA, Tenza D, Rojas R, Lamaze C, Bonifacino JS, Raposo G, Johannes L (2007) The retromer complex and clathrin define an early endosomal retrograde exit site. J Cell Sci 120:2022–2031

    Article  PubMed  CAS  Google Scholar 

  37. Popoff V, Mardones GA, Bai SK, Chambon V, Tenza D, Burgos PV, Shi A, Benaroch P, Urbe S, Lamaze C et al (2009) Analysis of articulation between clathrin and retromer in retrograde sorting on early endosomes. Traffic 10:1868–1880

    Article  PubMed  CAS  Google Scholar 

  38. Naslavsky N, Mckenzie J, Altan-Bonnet N, Sheff D, Caplan S (2009) EHD3 regulates early-endosome-to-Golgi transport and preserves Golgi morphology. J Cell Sci 122:389–400

    Article  PubMed  CAS  Google Scholar 

  39. Choudhury R, Diao A, Zhang F, Eisenberg E, Saint-Pol A, Williams C, Konstantakopoulos A, Lucocq J, Johannes L, Rabouille C et al (2005) Lowe syndrome protein OCRL1 interacts with clathrin and regulates protein trafficking between endosomes and the trans-Golgi network. Mol Biol Cell 16:3467–3479

    Article  PubMed  CAS  Google Scholar 

  40. Mallard F, Tang BL, Galli T, Tenza D, Saint-Pol A, Yue X, Antony C, Hong W, Goud B, Johannes L (2002) Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform. J Cell Biol 156:653–664

    Article  PubMed  CAS  Google Scholar 

  41. Del Nery E, Miserey-Lenkei S, Falguieres T, Nizak C, Johannes L, Perez F, Goud B (2006) Rab6A and Rab6A' GTPases play non-overlapping roles in membrane trafficking. Traffic 7:394–407

    Article  PubMed  Google Scholar 

  42. Wilcke M, Johannes L, Galli T, Mayau V, Goud B, Salamero J (2000) Rab11 regulates the compartmentalization of early endosomes required for efficient transport from early endosomes to the trans-golgi network. J Cell Biol 151:1207–1220

    Article  PubMed  CAS  Google Scholar 

  43. Falguieres T, Mallard F, Baron C, Hanau D, Lingwood C, Goud B, Salamero J, Johannes L (2001) Targeting of Shiga toxin B-subunit to retrograde transport route in association with detergent-resistant membranes. Mol Biol Cell 12:2453–2468

    Article  PubMed  CAS  Google Scholar 

  44. Dyve Lingelem AB, Bergan J, Sandvig K (2012) Inhibitors of intravesicular acidification protect against Shiga toxin in a pH-independent manner. Traffic 13:443–454

    Article  PubMed  Google Scholar 

  45. Walchli S, Skanland SS, Gregers TF, Lauvrak SU, Torgersen ML, Ying M, Kuroda S, Maturana A, Sandvig K (2008) The mitogen-activated protein kinase p38 links Shiga toxin-dependent signaling and trafficking. Mol Biol Cell 19:95–104

    Article  PubMed  CAS  Google Scholar 

  46. Torgersen ML, Walchli S, Grimmer S, Skanland SS, Sandvig K (2007) Protein kinase Cdelta is activated by Shiga toxin and regulates its transport. J Biol Chem 282:16317–16328

    Article  PubMed  CAS  Google Scholar 

  47. Yoshino A, Setty SR, Poynton C, Whiteman EL, Saint-Pol A, Burd CG, Johannes L, Holzbaur EL, Koval M, Mccaffery JM et al (2005) tGolgin-1 (p230, golgin-245) modulates Shiga-toxin transport to the Golgi and Golgi motility towards the microtubule-organizing centre. J Cell Sci 118:2279–2293

    Article  PubMed  CAS  Google Scholar 

  48. Lu L, Tai G, Hong W (2004) Autoantigen Golgin-97, an effector of Arl1 GTPase, participates in traffic from the endosome to the trans-golgi network. Mol Biol Cell 15:4426–4443

    Article  PubMed  CAS  Google Scholar 

  49. Derby MC, Lieu ZZ, Brown D, Stow JL, Goud B, Gleeson PA (2007) The trans-Golgi network golgin, GCC185, is required for endosome-to-Golgi transport and maintenance of Golgi structure. Traffic 8:758–773

    Article  PubMed  CAS  Google Scholar 

  50. Tai G, Lu L, Wang TL, Tang BL, Goud B, Johannes L, Hong W (2004) Participation of the syntaxin 5/Ykt6/GS28/GS15 SNARE complex in transport from the early/recycling endosome to the trans-Golgi network. Mol Biol Cell 15:4011–4022

    Article  PubMed  CAS  Google Scholar 

  51. Maxfield FR, Mcgraw TE (2004) Endocytic recycling. Nat Rev Mol Cell Biol 5:121–132

    Article  PubMed  CAS  Google Scholar 

  52. Puri S, Bachert C, Fimmel CJ, Linstedt AD (2002) Cycling of early Golgi proteins via the cell surface and endosomes upon lumenal pH disruption. Traffic 3:641–653

    Article  PubMed  CAS  Google Scholar 

  53. Linstedt AD, Mehta A, Suhan J, Reggio H, Hauri HP (1997) Sequence and overexpression of GPP130/GIMPc: evidence for saturable pH-sensitive targeting of a type II early Golgi membrane protein. Mol Biol Cell 8:1073–1087

    Article  PubMed  CAS  Google Scholar 

  54. Bachert C, Lee TH, Linstedt AD (2001) Lumenal endosomal and Golgi-retrieval determinants involved in pH-sensitive targeting of an early Golgi protein. Mol Biol Cell 12:3152–3160

    Article  PubMed  CAS  Google Scholar 

  55. Natarajan R, Linstedt AD (2004) A cycling cis-Golgi protein mediates endosome-to-Golgi traffic. Mol Biol Cell 15:4798–4806

    Article  PubMed  CAS  Google Scholar 

  56. Smith DC, Sillence DJ, Falguieres T, Jarvis RM, Johannes L, Lord JM, Platt FM, Roberts LM (2006) The association of Shiga-like toxin with detergent-resistant membranes is modulated by glucosylceramide and is an essential requirement in the endoplasmic reticulum for a cytotoxic effect. Mol Biol Cell 17:1375–1387

    Article  PubMed  CAS  Google Scholar 

  57. Nutikka A, Lingwood C (2004) Generation of receptor-active, globotriaosyl ceramide/cholesterol lipid 'rafts' in vitro: a new assay to define factors affecting glycosphingolipid receptor activity. Glycoconj J 20:33–38

    Article  PubMed  CAS  Google Scholar 

  58. Tam P, Mahfoud R, Nutikka A, Khine AA, Binnington B, Paroutis P, Lingwood C (2008) Differential intracellular transport and binding of verotoxin 1 and verotoxin 2 to globotriaosylceramide-containing lipid assemblies. J Cell Physiol 216:750–763

    Article  PubMed  CAS  Google Scholar 

  59. Chinnapen DJ, Hsieh WT, Te Welscher YM, Saslowsky DE, Kaoutzani L, Brandsma E, D'auria L, Park H, Wagner JS, Drake KR et al (2012) Lipid sorting by ceramide structure from plasma membrane to ER for the cholera toxin receptor ganglioside GM1. Dev Cell 23:573–586

    Article  PubMed  CAS  Google Scholar 

  60. Munro S, Pelham HR (1987) A C-terminal signal prevents secretion of luminal ER proteins. Cell 48:899–907

    Article  PubMed  CAS  Google Scholar 

  61. Nilsson T, Jackson M, Peterson PA (1989) Short cytoplasmic sequences serve as retention signals for transmembrane proteins in the endoplasmic reticulum. Cell 58:707–718

    Article  PubMed  CAS  Google Scholar 

  62. Jackson MR, Nilsson T, Peterson PA (1990) Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J 9:3153–3162

    PubMed  CAS  Google Scholar 

  63. Letourneur F, Gaynor EC, Hennecke S, Demolliere C, Duden R, Emr SD, Riezman H, Cosson P (1994) Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum. Cell 79:1199–1207

    Article  PubMed  CAS  Google Scholar 

  64. Cosson P, Letourneur F (1994) Coatomer interaction with di-lysine endoplasmic reticulum retention motifs. Science 263:1629–1631

    Article  PubMed  CAS  Google Scholar 

  65. Bremser M, Nickel W, Schweikert M, Ravazzola M, Amherdt M, Hughes CA, Sollner TH, Rothman JE, Wieland FT (1999) Coupling of coat assembly and vesicle budding to packaging of putative cargo receptors. Cell 96:495–506

    Article  PubMed  CAS  Google Scholar 

  66. Girod A, Storrie B, Simpson JC, Johannes L, Goud B, Roberts LM, Lord JM, Nilsson T, Pepperkok R (1999) Evidence for a COP-I-independent transport route from the Golgi complex to the endoplasmic reticulum. Nat Cell Biol 1:423–430

    Article  PubMed  CAS  Google Scholar 

  67. White J, Johannes L, Mallard F, Girod A, Grill S, Reinsch S, Keller P, Tzschaschel B, Echard A, Goud B et al (1999) Rab6 coordinates a novel Golgi to ER retrograde transport pathway in live cells. J Cell Biol 147:743–760

    Article  PubMed  CAS  Google Scholar 

  68. Chen A, Hu T, Mikoryak C, Draper RK (2002) Retrograde transport of protein toxins under conditions of COPI dysfunction. Biochim Biophys Acta 1589:124–139

    Article  PubMed  CAS  Google Scholar 

  69. Morikawa RK, Aoki J, Kano F, Murata M, Yamamoto A, Tsujimoto M, Arai H (2009) Intracellular phospholipase A1gamma (iPLA1gamma) is a novel factor involved in coat protein complex I- and Rab6-independent retrograde transport between the endoplasmic reticulum and the Golgi complex. J Biol Chem 284:26620–26630

    Article  PubMed  CAS  Google Scholar 

  70. Jarvela T, Linstedt AD (2012) Irradiation-induced protein inactivation reveals Golgi enzyme cycling to cell periphery. J Cell Sci 125:973–980

    Article  PubMed  CAS  Google Scholar 

  71. Tsai B, Rodighiero C, Lencer WI, Rapoport TA (2001) Protein disulfide isomerase acts as a redox-dependent chaperone to unfold cholera toxin. Cell 104:937–948

    Article  PubMed  CAS  Google Scholar 

  72. Tsai B, Rapoport TA (2002) Unfolded cholera toxin is transferred to the ER membrane and released from protein disulfide isomerase upon oxidation by Ero1. J Cell Biol 159:207–216

    Article  PubMed  CAS  Google Scholar 

  73. Schmitz A, Herrgen H, Winkeler A, Herzog V (2000) Cholera toxin is exported from microsomes by the Sec61p complex. J Cell Biol 148:1203–1212

    Article  PubMed  CAS  Google Scholar 

  74. Yu M, Haslam DB (2005) Shiga toxin is transported from the endoplasmic reticulum following interaction with the luminal chaperone HEDJ/ERdj3. Infect Immun 73:2524–2532

    Article  PubMed  CAS  Google Scholar 

  75. Falguieres T, Johannes L (2006) Shiga toxin B-subunit binds to the chaperone BiP and the nucleolar protein B23. Biol Cell 98:125–134

    Article  PubMed  CAS  Google Scholar 

  76. Mekalanos JJ, Collier RJ, Romig WR (1979) Enzymic activity of cholera toxin. II. Relationships to proteolytic processing, disulfide bond reduction, and subunit composition. J Biol Chem 254:5855–5861

    PubMed  CAS  Google Scholar 

  77. Kurmanova A, Llorente A, Polesskaya A, Garred O, Olsnes S, Kozlov J, Sandvig K (2007) Structural requirements for furin-induced cleavage and activation of Shiga toxin. Biochem Biophys Res Commun 357:144–149

    Article  PubMed  CAS  Google Scholar 

  78. Garred O, Van Deurs B, Sandvig K (1995) Furin-induced cleavage and activation of Shiga toxin. J Biol Chem 270:10817–10821

    Article  PubMed  CAS  Google Scholar 

  79. Sandvig K, Grimmer S, Lauvrak SU, Torgersen ML, Skretting G, Van Deurs B, Iversen TG (2002) Pathways followed by ricin and Shiga toxin into cells. Histochem Cell Biol 117:131–141

    Article  PubMed  CAS  Google Scholar 

  80. Strockbine NA, Jackson MP, Sung LM, Holmes RK, O'brien AD (1988) Cloning and sequencing of the genes for Shiga toxin from Shigella dysenteriae type 1. J Bacteriol 170:1116–1122

    PubMed  CAS  Google Scholar 

  81. Ganley IG, Espinosa E, Pfeffer SR (2008) A syntaxin 10-SNARE complex distinguishes two distinct transport routes from endosomes to the trans-Golgi in human cells. J Cell Biol 180:159–172

    Article  PubMed  CAS  Google Scholar 

  82. Xu Y, Martin S, James DE, Hong W (2002) GS15 forms a SNARE complex with syntaxin 5, GS28, and Ykt6 and is implicated in traffic in the early cisternae of the Golgi apparatus. Mol Biol Cell 13:3493–3507

    Article  PubMed  CAS  Google Scholar 

  83. Noel R, Gupta N, Pons V, Goudet A, Garcia-Castillo MD, Michau A, Martinez J, Buisson DA, Johannes L, Gillet D et al (2013) N-methyl dihydroquinazolinones derivatives of Retro-2 with enhanced efficacy against Shiga toxin. J Med Chem 56:3404–3415

    Article  PubMed  CAS  Google Scholar 

  84. Mukhopadhyay S, Linstedt AD (2011) Identification of a gain-of-function mutation in a Golgi P-type ATPase that enhances Mn2+ efflux and protects against toxicity. Proc Natl Acad Sci U S A 108:858–863

    Article  PubMed  CAS  Google Scholar 

  85. Mukhopadhyay S, Bachert C, Smith DR, Linstedt AD (2010) Manganese-induced trafficking and turnover of the cis-Golgi glycoprotein GPP130. Mol Biol Cell 21:1282–1292

    Article  PubMed  CAS  Google Scholar 

  86. Aschner M, Erikson KM, Herrero Hernandez E, Tjalkens R (2009) Manganese and its role in Parkinson's disease: from transport to neuropathology. Neuromolecular Med 11:252–266

    Article  PubMed  CAS  Google Scholar 

  87. Kotloff KL, Winickoff JP, Ivanoff B, Clemens JD, Swerdlow DL, Sansonetti PJ, Adak GK, Levine MM (1999) Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull World Health Organ 77:651–666

    PubMed  CAS  Google Scholar 

  88. Fraser ME, Fujinaga M, Cherney MM, Melton-Celsa AR, Twiddy EM, O'brien AD, James MN (2004) Structure of shiga toxin type 2 (Stx2) from Escherichia coli O157:H7. J Biol Chem 279:27511–27517

    Article  PubMed  CAS  Google Scholar 

  89. Zhang RG, Scott DL, Westbrook ML, Nance S, Spangler BD, Shipley GG, Westbrook EM (1995) The three-dimensional crystal structure of cholera toxin. J Mol Biol 251:563–573

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Institutes of Health grants R01 GM-084111 (to A.D.L.) and K99/R00 ES-020844 (to S.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam D. Linstedt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukhopadhyay, S., Linstedt, A.D. Retrograde trafficking of AB5 toxins: mechanisms to therapeutics. J Mol Med 91, 1131–1141 (2013). https://doi.org/10.1007/s00109-013-1048-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-013-1048-7

Keywords

Navigation