Skip to main content
Log in

Role of the BMK1/ERK5 signaling pathway: lessons from knockout mice

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Mitogen-activated protein (MAP) kinase cascades play a central role in mediating extracellular stimuli-induced intracellular signaling during cell activation. The fourth and least studied mammalian MAP kinase pathway, big MAP kinase 1 (BMK1), also known as extracellular signal regulated kinase 5 (ERK5), is activated in response to growth factors and stress. Activation of this signaling pathway has been implicated not only in physiological functions such as cell survival, proliferation and differentiation but also in pathological processes such as carcinogenesis, cardiac hypertrophy and atherosclerosis. In recent years a series of gene-targeted mice lacking components within the BMK1 cascade have been generated, which have enabled us to investigate the role of the BMK1 pathway within different tissues. Analyses of these knockout mice have led to major discoveries in the role of BMK1 signaling in angiogenesis and in cardiac development. Moreover, studies using conditional BMK1 knockout mice, which circumvent the early embryonic lethality of BMK1 knockouts, have unveiled the importance of BMK1 in endothelial survival and maintenance of vascular integrity during adulthood. Here we summarize current understanding of the function of BMK1, as well as include new data generated from a series of tissue-specific BMK1 knockout mice in an attempt to dissect the role of the BMK1 pathway in various cell types in animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Pearson G, Robinson F, Beers GT, Xu BE, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183

    Article  CAS  PubMed  Google Scholar 

  2. Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40

    Article  CAS  PubMed  Google Scholar 

  3. Lee JD, Ulevitch RJ, Han J (1995) Primary structure of BMK1: a new mammalian map kinase. Biochem Biophys Res Commun 213:715–724

    Article  CAS  PubMed  Google Scholar 

  4. Zhou G, Bao ZQ, Dixon JE (1995) Components of a new human protein kinase signal transduction pathway. J Biol Chem 270:12665–12669

    CAS  PubMed  Google Scholar 

  5. English JM, Vanderbilt CA, Xu S, Marcus S, Cobb MH (1995) Isolation of MEK5 and differential expression of alternatively spliced forms. J Biol Chem 270:28897–28902

    Article  CAS  PubMed  Google Scholar 

  6. Yan C, Luo H, Lee JD, Abe J, Berk BC (2001) Molecular cloning of mouse ERK5/BMK1 splice variants and characterization of ERK5 functional domains. J Biol Chem 276:10870–10978

    Article  CAS  PubMed  Google Scholar 

  7. Kato Y, Tapping RI, Huang S, Watson MH, Ulevitch RJ, Lee JD (1998) Bmk1/Erk5 is required for cell proliferation induced by epidermal growth factor. Nature 395:713–716

    Article  CAS  PubMed  Google Scholar 

  8. Kato Y, Kravchenko VV, Tapping RI, Han J, Ulevitch RJ, Lee JD (1997) BMK1/ERK5 regulates serum-induced early gene expression through the transcription factor MEF2C. EMBO J 16:7054–7066

    Article  CAS  PubMed  Google Scholar 

  9. Watson FL, Heerssen HM, Bhattacharyya A, Klesse L, Lin MZ, Segal RA (2001) Neurotrophins use the Erk5 pathway to mediate a retrograde survival response. Nat Neurosci 4:981–988

    Article  CAS  PubMed  Google Scholar 

  10. Hayashi M, Kim SW, Imanaka-Yoshida K, Yoshida T, Abel ED, Eliceiri B, Yang Y, Ulevitch RJ, Lee JD (2004) Targeted deletion of BMK1/ERK5 in adult mice perturbs vascular integrity and leads to endothelial failure. J Clin Invest 113:1138–1148

    Article  CAS  PubMed  Google Scholar 

  11. Kesavan K, Lobel-Rice K, Sun W, Lapadat R, Webb S, Johnson GL, Garrington TP (2004) MEKK2 regulates the coordinate activation of ERK5 and JNK in response to FGF-2 in fibroblasts. J Cell Physiol 199:140–148

    Article  CAS  PubMed  Google Scholar 

  12. Abe J, Kusuhara M, Ulevitch RJ, Berk BC, Lee JD (1996) Big mitogen-activated protein kinase 1 (BMK1) is a redox-sensitive kinase. J. Biol Chem 271:16586–16590

    Article  CAS  Google Scholar 

  13. Yan C, Takahashi M, Okuda M, Lee JD, Berk BC (1999) Fluid shear stress stimulates big mitogen-activated protein kinase 1 (BMK1) activity in endothelial cells. Dependence on tyrosine kinases and intracellular calcium. J Biol Chem 274:143–150

    Article  CAS  PubMed  Google Scholar 

  14. Suzaki Y, Yoshizumi M, Kagami S, Koyama AH, Taketani Y, Houchi H, Tsuchiya K, Takeda E, Tamaki T (2002) Hydrogen peroxide stimulates c-Src-mediated big mitogen-activated protein kinase 1 (BMK1) and the MEF2C signaling pathway in PC12 cells: potential role in cell survival following oxidative insults. J Biol Chem 277:9614–9621

    Article  CAS  PubMed  Google Scholar 

  15. Sun W, Kesavan K, Schaefer BC, Garrington TP, Ware M, Johnson NL, Gelfand EW, Johnson GL (2001) MEKK2 associates with the adapter protein Lad/RIBP and regulates the MEK5-BMK1/ERK5 pathway. J Biol Chem 276:5093–5100

    Article  CAS  PubMed  Google Scholar 

  16. Chao TH, Hayashi M, Tapping RI, Kato Y, Lee JD (1999) MEKK3 directly regulates MEK5 activity as part of the big mitogen-activated protein kinase 1 (BMK1) signaling pathway. J Biol Chem 274:36035–36038

    Article  CAS  PubMed  Google Scholar 

  17. Kamakura S, Moriguchi T, Nishida E (1999) Activation of the protein kinase ERK5/BMK1 by receptor tyrosine kinases. Identification and characterization of a signaling pathway to the nucleus. J Biol Chem 274:26563–26571

    Article  CAS  PubMed  Google Scholar 

  18. Mody N, Leitch J, Armstrong C, Dixon J, Cohen P (2001) Effects of MAP kinase cascade inhibitors on the MKK5/ERK5 pathway. FEBS Lett 502:21–24

    Article  CAS  PubMed  Google Scholar 

  19. Deacon K, Blank JL (1997) Characterization of the mitogen-activated protein kinase kinase 4 (MKK4)/c-Jun NH2-terminal kinase 1 and MKK3/p38 pathways regulated by MEK kinases 2 and 3. MEK kinase 3 activates MKK3 but does not cause activation of p38 kinase in vivo. J Biol Chem 272:14489–14496

    Article  CAS  PubMed  Google Scholar 

  20. Deacon K, Blank JL (1999) MEK kinase 3 directly activates MKK6 and MKK7, specific activators of the p38 and c-Jun NH2-terminal kinases. J Biol Chem 274:16604–16610

    Article  CAS  PubMed  Google Scholar 

  21. Marinissen MJ, Chiariello M, Pallante M, Gutkind JS (1999) A network of mitogen-activated protein kinases links G protein-coupled receptors to the c-jun promoter: a role for c-Jun NH2-terminal kinase, p38s, and extracellular signal-regulated kinase 5. Mol Cell Biol 19:4289–4301

    CAS  PubMed  Google Scholar 

  22. Kato Y, Zhao M, Morikawa A, Sugiyama T, Chakravortty D, Koide N, Yoshida T, Tapping RI, Yang Y, Yokochi T, Lee JD (2000) Big mitogen-activated kinase regulates multiple members of the MEF2 protein family. J Biol Chem 275:18534–18540

    Article  CAS  PubMed  Google Scholar 

  23. Hayashi M, Tapping RI, Chao TH, Lo JF, King CC, Yang Y, Lee JD (2001) BMK1 mediates growth factor-induced cell proliferation through direct cellular activation of serum and glucocorticoid-inducible kinase. J Biol Chem 276:8631–8634

    Article  CAS  PubMed  Google Scholar 

  24. Cameron SJ, Malik S, Akaike M, Lerner-Marmarosh N, Yan C, Lee JD, Abe J, Yang J (2003) Regulation of epidermal growth factor-induced connexin 43 gap junction communication by big mitogen-activated protein kinase1/ERK5 but not ERK1/2 kinase activation. J Biol Chem 278:18682–18688

    Article  CAS  PubMed  Google Scholar 

  25. Pi X, Yan C, Berk BC (2004) Big mitogen-activated protein kinase (BMK1)/ERK5 protects endothelial cells from apoptosis. Circ Res 94:362–369

    Article  CAS  PubMed  Google Scholar 

  26. English JM, Pearson G, Hockenberry T, Shivakumar L, White MA, Cobb MH (1999) Contribution of the ERK5/MEK5 pathway to Ras/Raf signaling and growth control. J Biol Chem 274:31588–31592

    Article  CAS  PubMed  Google Scholar 

  27. Pearson G, English JM, White MA, Cobb MH (2001) ERK5 and ERK2 cooperate to regulate NF-kappaB and cell transformation. J Biol Chem 276:7927–7931

    Article  CAS  PubMed  Google Scholar 

  28. Mehta PB, Jenkins BL, McCarthy L, Thilak L, Robson CN, Neal DE, Leung HY (2003) MEK5 overexpression is associated with metastatic prostate cancer, and stimulates proliferation, MMP-9 expression and invasion. Oncogene 22:1381–1389

    Article  CAS  PubMed  Google Scholar 

  29. Weldon CB, Scandurro AB, Rolfe KW, Clayton JL, Elliott S, Butler NN, Melnik LI, Alam J, McLachlan JA, Jaffe BM, Beckman BS, Burow ME (2002) Identification of mitogen-activated protein kinase kinase as a chemoresistant pathway in MCF-7 cells by using gene expression microarray. Surgery 132:293–301

    Article  PubMed  Google Scholar 

  30. Esparis-Ogando A, Diaz-Rodriguez E, Montero JC, Yuste L, Crespo P, Pandiella A (2002) Erk5 participates in neuregulin signal transduction and is constitutively active in breast cancer cells overexpressing ErbB2. Mol Cell Biol 22:270–285

    Article  CAS  PubMed  Google Scholar 

  31. Mulloy R, Salinas S, Philips A, Hipskind RA (2003) Activation of cyclin D1 expression by the ERK5 cascade. Oncogene 22:5387–5398

    Article  CAS  PubMed  Google Scholar 

  32. Francis GS (2001) Pathophysiology of chronic heart failure. Am J Med 110 [Suppl 7A]:37S–46S

  33. Takeishi Y, Huang Q, Abe J, Glassman M, Che W, Lee JD, Kawakatsu H, Lawrence EG, Hoit BD, Berk BC, Walsh RA (2001) Src and multiple MAP kinase activation in cardiac hypertrophy and congestive heart failure under chronic pressure-overload: comparison with acute mechanical stretch. J Mol Cell Cardiol 33:1637–1648

    Article  CAS  PubMed  Google Scholar 

  34. Nicol RL, Frey N, Olson EN (2000) From the sarcomere to the nucleus: role of genetics and signaling in structural heart disease. Annu Rev Genomics Hum Genet 1:179–223

    Article  CAS  PubMed  Google Scholar 

  35. Kacimi R, Gerdes AM (2003) Alterations in G protein and MAP kinase signaling pathways during cardiac remodeling in hypertension and heart failure. Hypertension 41:968–977

    Article  CAS  PubMed  Google Scholar 

  36. Nicol RL, Frey N, Pearson G, Cobb M, Richardson J, Olson EN (2001) Activated MEK5 induces serial assembly of sarcomeres and eccentric cardiac hypertrophy. EMBO J 20:2757–2767

    Article  CAS  PubMed  Google Scholar 

  37. Nakaoka Y, Nishida K, Fujio Y, Izumi M, Terai K, Oshima Y, Sugiyama S, Matsuda S, Koyasu S, Yamauchi-Takihara K, Hirano T, Kawase I, Hirota H (2003) Activation of gp130 transduces hypertrophic signal through interaction of scaffolding/docking protein Gab1 with tyrosine phosphatase SHP2 in cardiomyocytes. Circ Res 93:221–229

    Article  CAS  PubMed  Google Scholar 

  38. Thusen JH der, Kuiper J, Van Berkel TJ, Biessen EA (2003) Interleukins in atherosclerosis: molecular pathways and therapeutic potential. Pharmacol Rev 55:133–166

    Article  PubMed  Google Scholar 

  39. Zhao M, Liu Y, Bao M, Kato Y, Han J, Eaton JW (2002) Vascular smooth muscle cell proliferation requires both p38 and BMK1 MAP kinases. Arch Biochem Biophys 400:199–207

    Article  CAS  PubMed  Google Scholar 

  40. Luo H, Reidy MA (2002) Activation of big mitogen-activated protein kinase-1 regulates smooth muscle cell replication. Arterioscler Thromb Vasc Biol 22:394–399

    Article  CAS  PubMed  Google Scholar 

  41. Cavanaugh JE (2004) Role of extracellular signal regulated kinase 5 in neuronal survival. Eur J Biochem 271:2056–2059

    Article  CAS  PubMed  Google Scholar 

  42. Liu L, Cavanaugh JE, Wang Y, Sakagami H, Mao Z, Xia Z (2003) ERK5 activation of MEF2-mediated gene expression plays a critical role in BDNF-promoted survival of developing but not mature cortical neurons. Proc Natl Acad Sci USA 100:8532–8537

    Article  CAS  PubMed  Google Scholar 

  43. Shalizi A, Lehtinen M, Gaudilliere B, Donovan N, Han J, Konishi Y, Bonni A (2003) Characterization of a neurotrophin signaling mechanism that mediates neuron survival in a temporally specific pattern. J Neurosci 23:7326–7336

    CAS  PubMed  Google Scholar 

  44. Regan CP, Li W, Boucher DM, Spatz S, Su MS, Kuida K (2002) Erk5 null mice display multiple extraembryonic vascular and embryonic cardiovascular defects. Proc Natl Acad Sci USA 99:9248–9253

    Article  CAS  PubMed  Google Scholar 

  45. Sohn SJ, Sarvis BK, Cado D, Winoto A (2002) ERK5 MAPK regulates embryonic angiogenesis and acts as a hypoxia- sensitive repressor of vascular endothelial growth factor expression. J Biol Chem 277:43344–43351

    Article  CAS  PubMed  Google Scholar 

  46. Yan L, Carr J, Ashby PR, Murry-Tait V, Thompson C, Arthur JS (2003) Knockout of ERK5 causes multiple defects in placental and embryonic development. BMC Dev Biol 3:11

    Article  PubMed  Google Scholar 

  47. Yang J, Boerm M, McCarty M, Bucana C, Fidler IJ, Zhuang Y, Su B (2000) Mekk3 is essential for early embryonic cardiovascular development. Nat Genet 24:309–313

    Article  CAS  PubMed  Google Scholar 

  48. Lin Q, Schwarz J, Bucana C, Olson EN (1997) Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276:1404–1407

    Article  CAS  PubMed  Google Scholar 

  49. Lin Q, Lu J, Yanagisawa H, Webb R, Lyons GE, Richardson JA, Olson EN (1998) Requirement of the MADS-box transcription factor MEF2C for vascular development. Development 125:4565–4574

    CAS  PubMed  Google Scholar 

  50. Bi W, Drake CJ, Schwarz JJ (1999) The transcription factor MEF2C-null mouse exhibits complex vascular malformations and reduced cardiac expression of angiopoietin 1 and VEGF. Dev Biol 211:255–267

    Article  CAS  PubMed  Google Scholar 

  51. Han J, Jiang Y, Li Z, Kravchenko VV, Ulevitch RJ (1997) Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature 386:296–299

    Article  CAS  PubMed  Google Scholar 

  52. Tamura K, Sudo T, Senftleben U, Dadak AM, Johnson R, Karin M (2000) Requirement for p38alpha in erythropoietin expression: a role for stress kinases in erythropoiesis. Cell 102:221–231

    Article  CAS  PubMed  Google Scholar 

  53. Adams RH, Porras A, Alonso G, Jones M, Vintersten K, Panelli S, Valladares A, Perez L, Klein R, Nebreda AR (2000) Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development. Mol Cell 6:109–116

    Article  CAS  PubMed  Google Scholar 

  54. Tallquist MD, Soriano P (2000) Epiblast-restricted Cre expression in MORE mice: a tool to distinguish embryonic vs. extra-embryonic gene function. Genesis 26:113–115

    Article  CAS  PubMed  Google Scholar 

  55. Tronche F, Kellendonk C, Kretz O, Gass P, Anlag K, Orban PC, Bock R, Klein R, Schutz G (1999) Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat Genet 23:99–103

    Article  CAS  PubMed  Google Scholar 

  56. Zhu Y, Romero MI, Ghosh P, Ye Z, Charnay P, Rushing EJ, Marth JD, Parada LF (2001) Ablation of NF1 function in neurons induces abnormal development of cerebral cortex and reactive gliosis in the brain. Genes Dev 15:859–876

    Article  CAS  PubMed  Google Scholar 

  57. Postic C, Shiota M, Niswender KD, Jetton TL, Chen Y, Moates JM, Shelton KD, Lindner J, Cherrington AD, Magnuson MA (1999) Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase. J Biol Chem 274:305–315

    Article  CAS  PubMed  Google Scholar 

  58. Wagner KU, Wall RJ, St Onge L, Gruss P, Wynshaw-Boris A, Garrett L, Li M, Furth PA, Hennighausen L (1997) Cre-mediated gene deletion in the mammary gland. Nucleic Acids Res 25:4323–4330

    Article  CAS  PubMed  Google Scholar 

  59. Greenberg NM, DeMayo F, Finegold MJ, Medina D, Tilley WD, Aspinall JO, Cunha GR, Donjacour AA, Matusik RJ, Rosen JM (1995) Prostate cancer in a transgenic mouse. Proc Natl Acad Sci USA 92:3439–3443

    CAS  PubMed  Google Scholar 

  60. Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P (1988) Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 54:105–115

    Article  CAS  PubMed  Google Scholar 

  61. Chayama K, Papst PJ, Garrington TP, Pratt JC, Ishizuka T, Webb S, Ganiatsas S, Zon LI, Sun W, Johnson GL, Gelfand EW (2001) Role of MEKK2-MEK5 in the regulation of TNF-alpha gene expression and MEKK2-MKK7 in the activation of c-Jun N-terminal kinase in mast cells. Proc Natl Acad Sci USA 98:4599–4604

    Article  CAS  PubMed  Google Scholar 

  62. Wei X, Sun W, Fan R, Hahn J, Joetham A, Li G, Webb S, Garrington T, Dakhama A, Lucas J, Johnson GL, Gelfand EW (2003) MEF2C regulates c-Jun but not TNF-alpha gene expression in stimulated mast cells. Eur J Immunol 33:2903–2909

    Article  CAS  PubMed  Google Scholar 

  63. Dinev D, Jordan BW, Neufeld B, Lee JD, Lindemann D, Rapp UR, Ludwig S (2001) Extracellular signal regulated kinase 5 (ERK5) is required for the differentiation of muscle cells. EMBO Rep 2:829–834

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiing-Dwan Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayashi, M., Lee, JD. Role of the BMK1/ERK5 signaling pathway: lessons from knockout mice. J Mol Med 82, 800–808 (2004). https://doi.org/10.1007/s00109-004-0602-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-004-0602-8

Keywords

Navigation