Skip to main content
Log in

Regulation of histone deacetylase activities and functions by phosphorylation and its physiological relevance

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Histone deacetylases (HDACs) are conserved enzymes that regulate many cellular processes by catalyzing the removal of acetyl groups from lysine residues on histones and non-histone proteins. As appropriate for proteins that occupy such an essential biological role, HDAC activities and functions are in turn highly regulated. Overwhelming evidence suggests that the dysregulation of HDACs plays a major role in many human diseases. The regulation of HDACs is achieved by multiple different mechanisms, including posttranslational modifications. One of the most common posttranslational modifications on HDACs is reversible phosphorylation. Many HDAC phosphorylations are context-dependent, occurring in specific tissues or as a consequence of certain stimuli. Additionally, whereas phosphorylation can regulate some HDACs in a non-specific manner, many HDAC phosphorylations result in specific consequences. Although some of these modifications support normal HDAC function, aberrations can contribute to disease development. Here we review and critically evaluate how reversible phosphorylation activates or deactivates HDACs and, thereby, regulates their many functions under various cellular and physiological contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Seto E, Yoshida M (2014) Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol 6:a018713. https://doi.org/10.1101/cshperspect.a018713

    Article  PubMed  PubMed Central  Google Scholar 

  2. Deribe Y, Pawson T, Dikic I (2010) Post-translational modifications in signal integration. Nat Struct Mol Biol 17:666–672. https://doi.org/10.1038/nsmb.1842

    Article  CAS  PubMed  Google Scholar 

  3. Spickett CM, Pitt AR, Morrice N, Kolch W (2006) Proteomic analysis of phosphorylation, oxidation and nitrosylation in signal transduction. Biochim Biophys Acta 1764:1823–1841. https://doi.org/10.1016/j.bbapap.2006.09.013

    Article  CAS  PubMed  Google Scholar 

  4. Venne AS, Kollipara L, Zahedi RP (2014) The next level of complexity: crosstalk of posttranslational modifications. Proteomics 14:513–524. https://doi.org/10.1002/pmic.201300344

    Article  CAS  PubMed  Google Scholar 

  5. Cao J, Sun L, Aramsangtienchai P et al (2019) HDAC11 regulates type I interferon signaling through defatty-acylation of SHMT2. Proc Natl Acad Sci USA 116:5487–5492. https://doi.org/10.1073/pnas.1815365116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Roessler C, Nowak T, Pannek M et al (2014) Chemical probing of the human sirtuin 5 active site reveals its substrate acyl specificity and peptide-based inhibitors. Angew Chem Int Ed Engl 53:10728–10732. https://doi.org/10.1002/anie.201402679

    Article  CAS  PubMed  Google Scholar 

  7. Tan M, Peng C, Anderson KA et al (2014) Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab 19:605–617. https://doi.org/10.1016/j.cmet.2014.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carafa V, Nebbioso A, Altucci L (2012) Sirtuins and disease: the road ahead. Front Pharmacol 3:4. https://doi.org/10.3389/fphar.2012.00004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carafa V, Rotili D, Forgione M et al (2016) Sirtuin functions and modulation: from chemistry to the clinic. Clin Epigenet 8:61. https://doi.org/10.1186/s13148-016-0224-3

    Article  CAS  Google Scholar 

  10. Dai H, Sinclair DA, Ellis JL, Steegborn C (2018) Sirtuin activators and inhibitors: promises, achievements, and challenges. Pharmacol Ther 188:140–154. https://doi.org/10.1016/j.pharmthera.2018.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Du J, Jiang H, Lin H (2009) Investigating the ADP-ribosyltransferase activity of sirtuins with NAD analogues and 32P-NAD. Biochemistry 48:2878–2890. https://doi.org/10.1021/bi802093g

    Article  CAS  PubMed  Google Scholar 

  12. Du J, Zhou Y, Su X et al (2011) Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334:806–809. https://doi.org/10.1126/science.1207861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Feldman J, Dittenhafer-Reed K, Denu J (2012) Sirtuin catalysis and regulation. J Biol Chem 287:42419–42427. https://doi.org/10.1074/jbc.R112.378877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mathias R, Greco TM, Oberstein A et al (2014) Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell 159:1615–1625. https://doi.org/10.1016/j.cell.2014.11.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Reichert N, Choukrallah M-A, Matthias P (2012) Multiple roles of class I HDACs in proliferation, differentiation, and development. Cell Mol Life Sci 69:2173–2187. https://doi.org/10.1007/s00018-012-0921-9

    Article  CAS  PubMed  Google Scholar 

  16. Hunter T, Cooper J (1985) Protein-tyrosine kinases. Annu Rev Biochem 54:897–930. https://doi.org/10.1146/annurev.bi.54.070185.004341

    Article  CAS  PubMed  Google Scholar 

  17. Jin J, Pawson T (2012) Modular evolution of phosphorylation-based signalling systems. Philos Trans R Soc Lond B Biol Sci 367:2540–2555. https://doi.org/10.1098/rstb.2012.0106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. van der Laarse SAM, Leney AC, Heck AJR (2018) Crosstalk between phosphorylation and O-GlcNAcylation: friend or foe. FEBS J 285:3152–3167. https://doi.org/10.1111/febs.14491

    Article  CAS  PubMed  Google Scholar 

  19. Narayanan A, Jacobson M (2009) Computational studies of protein regulation by post-translational phosphorylation. Curr Opin Struct Biol 19:156–163. https://doi.org/10.1016/j.sbi.2009.02.007

    Article  CAS  PubMed  Google Scholar 

  20. Johnson L, Lewis R (2001) Structural basis for control by phosphorylation. Chem Rev 101:2209–2242. https://doi.org/10.1021/cr000225s

    Article  CAS  PubMed  Google Scholar 

  21. Ryšlavá H, Doubnerová V, Kavan D, Vaněk O (2013) Effect of posttranslational modifications on enzyme function and assembly. J Proteomics 92:80–109. https://doi.org/10.1016/j.jprot.2013.03.025

    Article  CAS  PubMed  Google Scholar 

  22. Kelly RDW, Cowley SM (2013) The physiological roles of histone deacetylase (HDAC) 1 and 2: complex co-stars with multiple leading parts. Biochem Soc Trans 41:741–749. https://doi.org/10.1042/BST20130010

    Article  CAS  PubMed  Google Scholar 

  23. Milazzo G, Mercatelli D, Di Muzio G et al (2020) Histone deacetylases (HDACs): evolution, specificity, role in transcriptional complexes, and pharmacological actionability. Genes (Basel) 11:556. https://doi.org/10.3390/genes11050556

    Article  CAS  Google Scholar 

  24. Pflum MKH, Tong JK, Lane WS, Schreiber SL (2001) Histone deacetylase 1 phosphorylation promotes enzymatic activity and complex formation. J Biol Chem 276:47733–47741. https://doi.org/10.1074/jbc.M105590200

    Article  CAS  PubMed  Google Scholar 

  25. Cai R, Kwon P, Yan-Neale Y et al (2001) Mammalian histone deacetylase 1 protein is posttranslationally modified by phosphorylation. Biochem Biophys Res Commun 283:445–453. https://doi.org/10.1006/bbrc.2001.4786

    Article  CAS  PubMed  Google Scholar 

  26. Galasinski SC, Resing KA, Goodrich JA, Ahn NG (2002) Phosphatase inhibition leads to histone deacetylases 1 and 2 phosphorylation and disruption of corepressor interactions. J Biol Chem 277:19618–19626. https://doi.org/10.1074/jbc.M201174200

    Article  CAS  PubMed  Google Scholar 

  27. Tsai S-C, Seto E (2002) Regulation of histone deacetylase 2 by protein kinase CK2. J Biol Chem 277:31826–31833. https://doi.org/10.1074/jbc.M204149200

    Article  CAS  PubMed  Google Scholar 

  28. Adenuga D, Rahman I (2010) Protein kinase CK2-mediated phosphorylation of HDAC2 regulates co-repressor formation, deacetylase activity and acetylation of HDAC2 by cigarette smoke and aldehydes. Arch Biochem Biophys 498:62–73. https://doi.org/10.1016/j.abb.2010.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Adenuga D, Yao H, March TH, Seagrave J, Rahman I (2009) Histone deacetylase 2 is phosphorylated, ubiquitinated, and degraded by cigarette smoke. Am J Respir Cell Mol Biol 40:464–473. https://doi.org/10.1165/rcmb.2008-0255OC

    Article  CAS  PubMed  Google Scholar 

  30. Segré CV, Chiocca S (2011) Regulating the regulators: the post-translational code of class I HDAC1 and HDAC2. J Biomed Biotechnol 2011:690848. https://doi.org/10.1155/2011/690848

    Article  CAS  PubMed  Google Scholar 

  31. Zhang X, Ozawa Y, Lee H et al (2005) Histone deacetylase 3 (HDAC3) activity is regulated by interaction with protein serine/threonine phosphatase 4. Genes Dev 19:827–839. https://doi.org/10.1101/gad.1286005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Patil H, Wilks C, Gonzaelez RW et al (2016) Mitotic activation of a novel histone deacetylase 3-linker histone H1.3 protein complex by protein kinase CK2. J Biol Chem 291:3158–3172. https://doi.org/10.1074/jbc.M115.643874

    Article  CAS  PubMed  Google Scholar 

  33. Han KA, Shin WH, Jung S et al (2017) Leucine-rich repeat kinase 2 exacerbates neuronal cytotoxicity through phosphorylation of histone deacetylase 3 and histone deacetylation. Hum Mol Genet 26:1–18. https://doi.org/10.1093/hmg/ddw363

    Article  CAS  PubMed  Google Scholar 

  34. Seo J, Guk G, Park S-H et al (2019) Tyrosine phosphorylation of HDAC3 by Src kinase mediates proliferation of HER2-positive breast cancer cells. J Cell Physiol 234:6428–6436. https://doi.org/10.1002/jcp.27378

    Article  CAS  PubMed  Google Scholar 

  35. Lee H, Rezai-zadeh N, Seto E (2004) Negative regulation of histone deacetylase 8 activity by cyclic AMP-dependent protein kinase A. Mol Cell Biol 24:765–773. https://doi.org/10.1128/MCB.24.2.765-773.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Karolczak-Bayatti M, Sweeney M, Cheng J et al (2011) Acetylation of heat shock protein 20 (Hsp20) regulates human myometrial activity. J Biol Chem 286:34346–34355. https://doi.org/10.1074/jbc.M111.278549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Somoza JR, Skene RJ, Katz BA et al (2004) Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure 12:1325–1334. https://doi.org/10.1016/j.str.2004.04.012

    Article  CAS  PubMed  Google Scholar 

  38. Deribe YL, Wild P, Chandrashaker A et al (2009) Regulation of epidermal growth factor receptor trafficking by lysine deacetylase HDAC6. Sci Signal 22:ra84. https://doi.org/10.1126/scisignal.2000576

    Article  CAS  Google Scholar 

  39. Le Roy C, Wrana J (2005) Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat Rev Mol Cell Biol 6:112–126. https://doi.org/10.1038/nrm1571

    Article  CAS  PubMed  Google Scholar 

  40. Williams KA, Zhang M, Xiang S et al (2013) Extracellular signal-regulated kinase (erk) phosphorylates histone deacetylase 6 (HDAC6) at serine 1035 to stimulate cell migration. J Biol Chem 288:33156–33170. https://doi.org/10.1074/jbc.M113.472506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen S, Owens G, Makarenkova H, Edelman D (2010) HDAC6 regulates mitochondrial transport in hippocampal neurons. PLoS ONE 5:e10848. https://doi.org/10.1371/journal.pone.0010848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Reynolds I, Malaiyandi L, Coash M, Rintoul G (2004) Mitochondrial trafficking in neurons: a key variable in neurodegeneration? J Bioenerg Biomembr 36:283–286. https://doi.org/10.1023/B:JOBB.0000041754.78313.c2

    Article  CAS  PubMed  Google Scholar 

  43. Trimmer P, Borland M (2005) Differentiated Alzheimer’s disease transmitochondrial cybrid cell lines exhibit reduced organelle movement. Antioxid Redox Signal 7:1101–1109. https://doi.org/10.1089/ars.2005.7.1101

    Article  CAS  PubMed  Google Scholar 

  44. Kong D, Zhan Y, Liu Z et al (2016) SIRT1-mediated ERβ suppression in the endothelium contributes to vascular aging. Aging Cell 15:1092–1102. https://doi.org/10.1111/acel.12515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kang H, Jung J-W, Kim MK, Chung JH (2009) CK2 is the regulator of SIRT1 substrate-binding affinity, deacetylase activity and cellular response to DNA-damage. PLoS ONE 4:e6611. https://doi.org/10.1371/journal.pone.0006611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guo X, Williams JG, Schug TT, Li X (2010) DYRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1. J Biol Chem 285:13223–13232. https://doi.org/10.1074/jbc.M110.102574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Conrad E, Polonio-Vallon T, Meister M et al (2016) HIPK2 restricts SIRT1 activity upon severe DNA damage by a phosphorylation-controlled mechanism. Cell Death Differ 23:110–122. https://doi.org/10.1038/cdd.2015.75

    Article  CAS  PubMed  Google Scholar 

  48. Lee CW, Wong LL, Tse EY et al (2012) AMPK promotes p53 acetylation via phosphorylation and inactivation of SIRT1 in liver cancer cells. Cancer Res 72:4394–4404. https://doi.org/10.1158/0008-5472.CAN-12-0429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Van Meter M, Simon M, Tombline G et al (2016) JNK phosphorylates SIRT6 to stimulate DNA double- strand break repair in response to oxidative stress by recruiting PARP1 to DNA breaks. Cell Rep 16:2641–2650. https://doi.org/10.1016/j.celrep.2016.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Movahedi Naini S, Sheridan AM, Force T, Shah JV, Bonventre JV (2015) Group IVA cytosolic phospholipase A2 regulates the G2-to-M transition by modulating the activity of tumor suppressor SIRT2. Mol Cell Biol 35:3768–3784. https://doi.org/10.1128/MCB.00184-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pandithage R, Lilischkis R, Harting K et al (2008) The regulation of SIRT2 function by cyclin-dependent kinases affects cell motility. J Cell Biol 180:915–929. https://doi.org/10.1083/jcb.200707126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang AH, Kruhlak MJ, Wu J et al (2000) Regulation of histone deacetylase 4 by binding of 14-3-3 proteins. Mol Cell Biol 20:6904–6912. https://doi.org/10.1128/mcb.20.18.6904-6912.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shimizu E, Nakatani T, He Z, Partridge NC (2014) Parathyroid hormone regulates histone deacetylase (HDAC) 4 through protein kinase A-mediated phosphorylation and dephosphorylation in osteoblastic cells. J Biol Chem 289:21340–21350. https://doi.org/10.1074/jbc.M114.550699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McKinsey TA, Zhang CL, Olson EN (2001) Identification of a signal-responsive nuclear export sequence in class II histone deacetylases. Mol Cell Biol 21:6312–6321. https://doi.org/10.1128/MCB.21.18.6312-6321.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Walkinshaw DR, Weist R, Kim G-W et al (2013) The tumor suppressor kinase LKB1 activates the downstream kinases SIK2 and SIK3 to stimulate nuclear export of class IIa histone deacetylases. J Biol Chem 288:9345–9362. https://doi.org/10.1074/jbc.M113.456996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dequiedt F, Martin M, Von Blume J et al (2006) New role for hPar-1 Kinases EMK and C-TAK1 in regulating localization and activity of class IIa histone deacetylases. Mol Cell Biol 26:7086–7102. https://doi.org/10.1128/MCB.00231-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. McKinsey TA, Zhang CL, Olson EN (2000) Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proc Natl Acad Sci USA 97:14400–14405. https://doi.org/10.1073/pnas.260501497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sen N, Kumari R, Singh MI, Das S (2013) HDAC5, a key component in temporal regulation of p53-mediated transactivation in response to genotoxic stress. Mol Cell 52:406–420. https://doi.org/10.1016/j.molcel.2013.09.003

    Article  CAS  PubMed  Google Scholar 

  59. Greco TM, Yu F, Guise AJ, Cristea IM (2011) Nuclear import of histone deacetylase 5 by requisite nuclear localization signal phosphorylation. Mol Cell Proteom 10(M110):004317. https://doi.org/10.1074/mcp.M110.004317

    Article  CAS  Google Scholar 

  60. Ha CH, Kim JY, Zhao J et al (2010) PKA phosphorylates histone deacetylase 5 and prevents its nuclear export, leading to the inhibition of gene transcription and cardiomyocyte hypertrophy. Proc Natl Acad Sci USA 107:15467–15472. https://doi.org/10.1073/pnas.1000462107

    Article  PubMed  PubMed Central  Google Scholar 

  61. Gomis-Coloma C, Velasco-Aviles S, Gomez-Sanchez JA et al (2018) Class IIa histone deacetylases link cAMP signaling to the myelin transcriptional program of Schwann cells. J Cell Biol 217:1249–1268. https://doi.org/10.1083/jcb.201611150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Walkinshaw DR, Weist R, Xiao L et al (2013) Dephosphorylation at a conserved SP motif governs cAMP sensitivity and nuclear localization of class IIa histone deacetylases. J Biol Chem 288:5591–5605. https://doi.org/10.1074/jbc.M112.445668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Weeks KL, Ranieri A, Karaś A et al (2017) β-adrenergic stimulation induces histone deacetylase 5 (HDAC5) nuclear accumulation in cardiomyocytes by B55α-PP2A-mediated dephosphorylation. J Am Heart Assoc 6:e004861. https://doi.org/10.1161/JAHA.116.004861

    Article  PubMed  PubMed Central  Google Scholar 

  64. Paroni G, Cernotta N, Dello Russo C et al (2008) PP2A regulates HDAC4 nuclear import. Mol Biol Cell 19:665–667. https://doi.org/10.1091/mbc.e07-06-0623

    Article  Google Scholar 

  65. Nasrin N, Kaushik VK, Fortier E et al (2009) JNK1 phosphorylates SIRT1 and promotes its enzymatic activity. PLoS ONE 4:e8414. https://doi.org/10.1371/journal.pone.0008414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Berthiaume M, Boufaied N, Moisan A, Gaudreau L (2006) High levels of oxidative stress globally inhibit gene transcription and histone acetylation. DNA Cell Biol 25:124–134. https://doi.org/10.1089/dna.2006.25.124

    Article  CAS  PubMed  Google Scholar 

  67. Tanno M, Sakamoto J, Miura T, Shimamoto K, Horio Y (2007) Nucleocytoplasmic shuttling of the NAD + -dependent histone deacetylase SIRT1. J Biol Chem 282:6823–6832. https://doi.org/10.1074/jbc.M609554200

    Article  CAS  PubMed  Google Scholar 

  68. Gonzalez-Zuñiga M, Contreras PS, Estrada LD et al (2014) c-Abl stabilizes HDAC2 levels by tyrosine phosphorylation repressing neuronal gene expression in Alzheimer’s disease. Mol Cell 56:163–173. https://doi.org/10.1016/j.molcel.2014.08.013

    Article  CAS  PubMed  Google Scholar 

  69. Wen L, Chen Z, Zhang F et al (2013) Ca2 +/calmodulin-dependent protein kinase kinase β phosphorylation of Sirtuin 1 in endothelium is atheroprotective. Proc Natl Acad Sci USA 110:E2420–E2427. https://doi.org/10.1073/pnas.1309354110

    Article  PubMed  PubMed Central  Google Scholar 

  70. Cernotta N, Clocchiatti A, Florean C, Brancolini C (2011) Ubiquitin-dependent degradation of HDAC4, a new regulator of random cell motility. Mol Biol Cell 22:278–289. https://doi.org/10.1091/mbc.E10-07-0616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rechsteiner M, Rogers SW (1996) PEST sequences and regulation by proteolysis. Trends Biochem Sci 21:267–271. https://doi.org/10.1016/S0968-0004(96)10031-1

    Article  CAS  PubMed  Google Scholar 

  72. Choi YH, Kim H, Lee SH, Jin Y-H, Lee KY (2014) Src regulates the activity of SIRT2. Biochem Biophys Res Commun 450:1120–1125. https://doi.org/10.1016/j.bbrc.2014.06.117

    Article  CAS  PubMed  Google Scholar 

  73. Thirumurthi U, Shen J, Xia W et al (2014) MDM2-mediated degradation of SIRT6 phosphorylated by AKT1 promotes tumorigenesis and trastuzumab resistance in breast cancer. Sci Signal 7:71. https://doi.org/10.1126/scisignal.2005076

    Article  CAS  Google Scholar 

  74. Sun L, Fan G, Shan P et al (2016) Regulation of energy homeostasis by the ubiquitin-independent REGγ proteasome. Nat Commun 7:12497. https://doi.org/10.1038/ncomms12497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hwang JS, Ham SA, Yoo T et al (2016) Upregulation of MKP-7 in response to rosiglitazone treatment ameliorates lipopolysaccharide-induced destabilization of SIRT1 by inactivating JNK. Pharmacol Res 114:47–55. https://doi.org/10.1016/j.phrs.2016.10.014

    Article  CAS  PubMed  Google Scholar 

  76. Gao Z, Zhang J, Kheterpal I et al (2011) Sirtuin 1 (SIRT1) protein degradation in response to persistent c-Jun N-terminal kinase 1 (JNK1) activation contributes to hepatic steatosis in obesity. J Biol Chem 286:22227–22234. https://doi.org/10.1074/jbc.M111.228874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ford J, Ahmed S, Allison S, Jiang M, Milner J (2008) JNK2-dependent regulation of SIRT1 protein stability. Cell Cycle 7:3091–3097. https://doi.org/10.4161/cc.7.19.6799

    Article  CAS  PubMed  Google Scholar 

  78. Guise AJ, Greco TM, Zhang IY, Yu F, Cristea IM (2012) Aurora B-dependent regulation of class IIa histone deacetylases by mitotic nuclear localization signal phosphorylation. Mol Cell Proteom 11:1220–1229. https://doi.org/10.1074/mcp.M112.021030

    Article  CAS  Google Scholar 

  79. Ling H, Peng L, Wang J, Rahhal R, Seto E (2018) Histone deacetylase SIRT1 targets Plk2 to regulate centriole duplication. Cell Rep 25:2851–2865. https://doi.org/10.1016/j.celrep.2018.11.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sasaki T, Maier B, Koclega KD et al (2008) Phosphorylation regulates SIRT1 function. PLoS ONE 3:e4020. https://doi.org/10.1371/journal.pone.0004020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. North BJ, Verdin E (2007) Mitotic regulation of SIRT2 by cyclin-dependent kinase 1-dependent phosphorylation. J Biol Chem 282:19546–19555. https://doi.org/10.1074/jbc.M702990200

    Article  CAS  PubMed  Google Scholar 

  82. Eckschlager T, Plch J, Stiborova M, Hrabeta J (2017) Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci. https://doi.org/10.3390/ijms18071414

    Article  PubMed  PubMed Central  Google Scholar 

  83. Falkenberg KJ, Johnstone RW (2014) Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 13:673–691. https://doi.org/10.1038/nrd4360

    Article  CAS  PubMed  Google Scholar 

  84. Lau AW, Liu P, Inuzuka H, Gao D (2014) SIRT1 phosphorylation by AMP-activated protein kinase regulates p53 acetylation. Am J Cancer Res 4:245–255

    PubMed  PubMed Central  Google Scholar 

  85. Masui K, Tanaka K, Akhavan D et al (2013) mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc. Cell Metab 18:726–739. https://doi.org/10.1016/j.cmet.2013.09.013

    Article  CAS  PubMed  Google Scholar 

  86. Masui K, Tanaka K, Ikegami S et al (2015) Glucose-dependent acetylation of Rictor promotes targeted cancer therapy resistance. Proc Natl Acad Sci USA 112:9406–9411. https://doi.org/10.1073/pnas.1511759112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu R, Fan M, Candas D et al (2015) CDK1-mediated SIRT3 activation enhances mitochondrial function and tumor radioresistance. Mol Cancer Ther 14:2090–2102. https://doi.org/10.1158/1535-7163.MCT-15-0017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Conze D, Weiss L, Regen PS et al (2001) Autocrine production of interleukin 6 causes multidrug resistance in breast cancer cells. Cancer Res 61:8851–8858

    CAS  PubMed  Google Scholar 

  89. Wang W, Li F, Xu Y et al (2018) JAK1-mediated Sirt1 phosphorylation functions as a negative feedback of the JAK1-STAT3 pathway. J Biol Chem 293:11067–11075. https://doi.org/10.1074/jbc.RA117.001387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gao SP, Mark KG, Leslie K et al (2007) Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J Clin Invest 117:3846–3856. https://doi.org/10.1172/JCI31871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Matthews SA, Liu P, Spitaler M et al (2006) Essential role for protein kinase D family kinases in the regulation of class II histone deacetylases in B lymphocytes. Mol Cell Biol 26:1569–1577. https://doi.org/10.1128/MCB.26.4.1569-1577.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Parra M, Kasler H, McKinsey TA, Olson EN, Verdin E (2005) Protein kinase D1 phosphorylates HDAC7 and induces its nuclear export after T-cell receptor activation. J Biol Chem 280:13762–13770. https://doi.org/10.1074/jbc.M413396200

    Article  CAS  PubMed  Google Scholar 

  93. Dequiedt F, Van Lint J, Lecomte E et al (2005) Phosphorylation of histone deacetylase 7 by protein kinase D mediates T cell receptor-induced Nur77 expression and apoptosis. J Exp Med 201:793–804. https://doi.org/10.1084/jem.20042034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Navarro MN, Goebel J, Feijoo-Carnero C, Morrice N, Cantrell DA (2011) Phosphoproteomic analysis reveals an intrinsic pathway for the regulation of histone deacetylase 7 that controls the function of cytotoxic T lymphocytes. Nat Immunol 12:352–361. https://doi.org/10.1038/ni.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pais TF, Szegő ÉM, Marques O et al (2013) The NAD-dependent deacetylase sirtuin 2 is a suppressor of microglial activation and brain inflammation. EMBO J 32:2603–2616. https://doi.org/10.1038/emboj.2013.200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pereira JM, Chevalier C, Chaze T et al (2018) Infection reveals a modification of SIRT2 critical for chromatin association. Cell Rep 23:1124–1137. https://doi.org/10.1016/j.celrep.2018.03.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Liu Y, Schneider MF (2013) Opposing HDAC4 nuclear fluxes due to phosphorylation by β-adrenergic activated protein kinase A or by activity or Epac activated CaMKII in skeletal muscle fibres. J Physiol 591:3605–3623. https://doi.org/10.1113/jphysiol.2013.256263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. McKinsey TA, Zhang CL, Lu J, Olson EN (2000) Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408:106–111. https://doi.org/10.1038/35040593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Deng X, Ewton DZ, Mercer SE, Friedman E (2005) Mirk/dyrk1B decreases the nuclear accumulation of class II histone deacetylases during skeletal muscle differentiation. J Biol Chem 280:4894–4905. https://doi.org/10.1074/jbc.M411894200

    Article  CAS  PubMed  Google Scholar 

  100. Ha CH, Wang W, Jhun BS et al (2008) Protein kinase D-dependent phosphorylation and nuclear export of histone deacetylase 5 mediates vascular endothelial growth factor-induced gene expression and angiogenesis. J Biol Chem 283:14590–14599. https://doi.org/10.1074/jbc.M800264200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ha CH, Jhun BS, Kao HY, Jin ZG (2008) VEGF stimulates HDAC7 phosphorylation and cytoplasmic accumulation modulating matrix metalloproteinase expression and angiogenesis. Arterioscler Thromb Vasc Biol 28:1782–1788. https://doi.org/10.1161/ATVBAHA.108.172528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang S, Li X, Parra M et al (2008) Control of endothelial cell proliferation and migration by VEGF signaling to histone deacetylase 7. Proc Natl Acad Sci USA 105:7738–7743. https://doi.org/10.1073/pnas.0802857105

    Article  PubMed  PubMed Central  Google Scholar 

  103. Gemini-Piperni S, Milani R, Bertazzo S et al (2014) Kinome profiling of osteoblasts on hydroxyapatite opens new avenues on biomaterial cell signaling. Biotechnol Bioeng 111:1900–1905. https://doi.org/10.1002/bit.25246

    Article  CAS  PubMed  Google Scholar 

  104. Carnegie GK, Soughayer J, Smith FD et al (2008) AKAP-Lbc mobilizes a cardiac hypertrophy signaling pathway. Mol Cell 32:169–179. https://doi.org/10.1016/j.molcel.2008.08.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Little GH, Bai Y, Williams T, Poizat C (2007) Nuclear calcium/calmodulin-dependent protein kinase iidelta preferentially transmits signals to histone deacetylase 4 in cardiac cells. J Biol Chem 282:7219–7231. https://doi.org/10.1074/jbc.M604281200

    Article  CAS  PubMed  Google Scholar 

  106. Huynh QK, McKinsey TA (2006) Protein kinase D directly phosphorylates histone deacetylase 5 via a random sequential kinetic mechanism. Arch Biochem Biophys 450:141–148. https://doi.org/10.1016/j.abb.2006.02.014

    Article  CAS  PubMed  Google Scholar 

  107. Chang CW, Lee L, Yu D et al (2013) Acute β-adrenergic activation triggers nuclear import of histone deacetylase 5 and delays G(q)-induced transcriptional activation. J Biol Chem 288:192–204. https://doi.org/10.1074/jbc.M112.382358

    Article  CAS  PubMed  Google Scholar 

  108. Huynh QK (2011) Evidence for the phosphorylation of serine259 of histone deacetylase 5 by protein kinase Cδ. Arch Biochem Biophys 506:173–180. https://doi.org/10.1016/j.abb.2010.12.005

    Article  CAS  PubMed  Google Scholar 

  109. Chen L, Hahn H, Wu G et al (2001) Opposing cardioprotective actions and parallel hypertrophic effects of delta PKC and epsilon PKC. Proc Natl Acad Sci USA 98:11114–11119. https://doi.org/10.1073/pnas.191369098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Eom GH, Cho YK, Ko JH et al (2011) Casein kinase-2α1 induces hypertrophic response by phosphorylation of histone deacetylase 2 S394 and its activation in the heart. Circulation 123:2392–2403. https://doi.org/10.1161/CIRCULATIONAHA.110.003665

    Article  CAS  PubMed  Google Scholar 

  111. Wang H, Liu S, Liu S et al (2017) Enhanced expression and phosphorylation of Sirt7 activates smad2 and ERK signaling and promotes the cardiac fibrosis differentiation upon angiotensin-II stimulation. PLoS ONE 12:e0178530. https://doi.org/10.1371/journal.pone.0178530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wang S, Jiang B, Zhang T et al (2015) Insulin and mTOR pathway regulate HDAC3-mediated deacetylation and activation of PGK1. PLoS Biol 13:e1002243. https://doi.org/10.1371/journal.pbio.1002243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mihaylova MM, Vasquez DS, Ravnskjaer K et al (2011) Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145:607–621. https://doi.org/10.1016/j.cell.2011.03.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. McGee SL, van Denderen BJ, Howlett KF et al (2008) AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Diabetes 57:860–867. https://doi.org/10.2337/db07-0843

    Article  CAS  PubMed  Google Scholar 

  115. Leturque A, Loizeau M, Vaulont S, Salminen M, Girard J (1996) Improvement of insulin action in diabetic transgenic mice selectively overexpressing GLUT4 in skeletal muscle. Diabetes 45:23–27. https://doi.org/10.2337/diab.45.1.23

    Article  CAS  PubMed  Google Scholar 

  116. Ren JM, Marshall BA, Mueckler MM et al (1995) Overexpression of Glut4 protein in muscle increases basal and insulin-stimulated whole body glucose disposal in conscious mice. J Clin Invest 95:429–432. https://doi.org/10.1172/JCI117673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tsao TS, Burcelin R, Katz EB, Huang L, Charron MJ (1996) Enhanced insulin action due to targeted GLUT4 overexpression exclusively in muscle. Diabetes 45:28–36. https://doi.org/10.2337/diab.45.1.28

    Article  CAS  PubMed  Google Scholar 

  118. Gerhart-Hines Z, Dominy JE Jr, Blättler SM et al (2011) The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD(+). Mol Cell 44:851–863. https://doi.org/10.1016/j.molcel.2011.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nedergaard J, Cannon B (2010) The changed metabolic world with human brown adipose tissue: therapeutic visions. Cell Metab 11:268–272. https://doi.org/10.1016/j.cmet.2010.03.007

    Article  CAS  PubMed  Google Scholar 

  120. Feng B, Jiao P, Helou Y et al (2014) Mitogen-activated protein kinase phosphatase 3 (MKP-3)-deficient mice are resistant to diet-induced obesity. Diabetes 63:2924–2934. https://doi.org/10.2337/db14-0066

    Article  PubMed  PubMed Central  Google Scholar 

  121. Choi SE, Kwon S, Seok S et al (2017) Obesity-linked phosphorylation of SIRT1 by casein kinase 2 inhibits its nuclear localization and promotes fatty liver. Mol Cell Biol 37:e00006–e00017. https://doi.org/10.1128/MCB.00006-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Dong S, Jia C, Zhang S et al (2013) The REGγ proteasome regulates hepatic lipid metabolism through inhibition of autophagy. Cell Metab 18:380–391. https://doi.org/10.1016/j.cmet.2013.08.012

    Article  CAS  PubMed  Google Scholar 

  123. Czaja MJ (2010) Autophagy in health and disease. 2. Regulation of lipid metabolism and storage by autophagy: pathophysiological implications. Am J Physiol Cell Physiol 298:C973–C978. https://doi.org/10.1152/ajpcell.00527.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Singh R, Kaushik S, Wang Y et al (2009) Autophagy regulates lipid metabolism. Nature 458:1131–1135. https://doi.org/10.1038/nature07976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhang Y, Goldman S, Baerga R et al (2009) Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc Natl Acad Sci USA 106:19860–19865. https://doi.org/10.1073/pnas.0906048106

    Article  PubMed  PubMed Central  Google Scholar 

  126. Lu J, Xu Q, Ji M et al (2017) The phosphorylation status of T522 modulates tissue-specific functions of SIRT1 in energy metabolism in mice. EMBO Rep 18:841–857. https://doi.org/10.15252/embr.201643803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Finsterwald C, Carrard A, Martin JL (2013) Role of salt-inducible kinase 1 in the activation of MEF2-dependent transcription by BDNF. PLoS ONE 8:e54545. https://doi.org/10.1371/journal.pone.0054545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Choi M, Lee SH, Wang SE et al (2015) Ketamine produces antidepressant-like effects through phosphorylation-dependent nuclear export of histone deacetylase 5 (HDAC5) in rats. Proc Natl Acad Sci USA 112:15755–15760. https://doi.org/10.1073/pnas.1513913112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Watabe M, Nakaki T (2011) Protein kinase CK2 regulates the formation and clearance of aggresomes in response to stress. J Cell Sci 124:1519–1532. https://doi.org/10.1242/jcs.081778

    Article  CAS  PubMed  Google Scholar 

  130. Peng S, Zhao S, Yan F et al (2015) HDAC2 selectively regulates FOXO3a-mediated gene transcription during oxidative stress-induced neuronal cell death. J Neurosci 35:1250–1259. https://doi.org/10.1523/JNEUROSCI.2444-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hornbeck PV, Zhang B, Murray B et al (2015) PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 43:D512–D520. https://doi.org/10.1093/nar/gku1267

    Article  CAS  PubMed  Google Scholar 

  132. Diella F, Cameron S, Gemünd C et al (2004) Phospho.ELM: a database of experimentally verified phosphorylation sites in eukaryotic proteins. BMC Bioinform 5:79. https://doi.org/10.1186/1471-2105-5-79

    Article  Google Scholar 

  133. Diella F, Gould CM, Chica C, Via A, Gibson TJ (2008) Phospho.ELM: a database of phosphorylation sites–update 2008. Nucleic Acids Res 36:D240–D244. https://doi.org/10.1093/nar/gkm772

    Article  CAS  PubMed  Google Scholar 

  134. Dinkel H, Chica C, Via A et al (2011) Phospho.ELM: a database of phosphorylation sites–update 2011. Nucleic Acids Res 39:D261–D267. https://doi.org/10.1093/nar/gkq1104

    Article  CAS  PubMed  Google Scholar 

  135. Gnad F, Ren S, Cox J et al (2007) PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites. Genome Biol 8:R250. https://doi.org/10.1186/gb-2007-8-11-r250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Gnad F, Gunawardena J, Mann M (2011) PHOSIDA 2011: the posttranslational modification database. Nucleic Acids Res 39:D253–D260. https://doi.org/10.1093/nar/gkq1159

    Article  CAS  PubMed  Google Scholar 

  137. Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294:1351–1362. https://doi.org/10.1006/jmbi.1999.3310

    Article  CAS  PubMed  Google Scholar 

  138. Blom N, Sicheritz-Pontén T, Gupta R, Gammeltoft S, Brunak S (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4:1633–1649. https://doi.org/10.1002/pmic.200300771

    Article  CAS  PubMed  Google Scholar 

  139. Xue Y, Zhou F, Zhu M et al (2005) GPS: a comprehensive www server for phosphorylation sites prediction. Nucleic Acids Res 33:W184–W187. https://doi.org/10.1093/nar/gki393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Xue Y, Ren J, Gao X et al (2008) GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Mol Cell Proteomics 7:1598–1608. https://doi.org/10.1074/mcp.M700574-MCP200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Xue Y, Liu Z, Cao J et al (2011) GPS 2.1: enhanced prediction of kinase-specific phosphorylation sites with an algorithm of motif length selection. Protein Eng Des Sel 24:255–260. https://doi.org/10.1093/protein/gzq094

    Article  CAS  PubMed  Google Scholar 

  142. Amanchy R, Periaswamy B, Mathivanan S et al (2007) A curated compendium of phosphorylation motifs. Nat Biotechnol 25:285–286. https://doi.org/10.1038/nbt0307-285

    Article  CAS  PubMed  Google Scholar 

  143. Gu TL, Nardone J, Wang Y et al (2011) Survey of activated FLT3 signaling in leukemia. PLoS ONE 6:19169. https://doi.org/10.1371/journal.pone.0019169

    Article  CAS  Google Scholar 

  144. Kettenbach AN, Schweppe DK, Faherty BK et al (2011) Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo-like kinase activities in mitotic cells. Sci Signal 4:rs5. https://doi.org/10.1126/scisignal.2001497

    Article  CAS  PubMed  Google Scholar 

  145. Mertins P, Yang F, Liu T et al (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteom 13:1690–1704. https://doi.org/10.1074/mcp.M113.036392

    Article  CAS  Google Scholar 

  146. Mertins P, Mani DR, Ruggles KV et al (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534:55–62. https://doi.org/10.1038/nature18003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Yu G, Xiao CL, Lu CH et al (2011) Phosphoproteome profile of human lung cancer cell line A549. Mol BioSyst 7:472–479. https://doi.org/10.1039/c0mb00055h

    Article  CAS  PubMed  Google Scholar 

  148. Hunter T (2009) Tyrosine phosphorylation: thirty years and counting. Curr Opin Cell Biol 21:140–146. https://doi.org/10.1016/j.ceb.2009.01.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hunter T (2007) Treatment for chronic myelogenous leukemia: the long road to imatinib. J Clin Invest 117:2036–2043. https://doi.org/10.1172/JCI31691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Arora A, Scholar EM (2005) Role of tyrosine kinase inhibitors in cancer therapy. J Pharmacol Exp Ther 315:971–979. https://doi.org/10.1124/jpet.105.084145

    Article  CAS  PubMed  Google Scholar 

  151. Wu P, Nielsen TE, Clausen MH (2015) FDA-approved small-molecule kinase inhibitors. Trends Pharmacol Sci 36:422–439. https://doi.org/10.1016/j.tips.2015.04.005

    Article  CAS  PubMed  Google Scholar 

  152. Meng F, Han M, Zheng B et al. (2009) All-trans retinoic acid increases KLF4 acetylation by inducing HDAC2 phosphorylation and its dissociation from KLF4 in vascular smooth muscle cells. Biochem Biophys Res Commun 387:13–18. https://doi.org/10.1016/j.bbrc.2009.05.112

    Article  CAS  PubMed  Google Scholar 

  153. Grozinger CM, Schreiber SL (2000) Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14–3-3-dependent cellular localization. Proc Natl Acad Sci U S A 97:7835–7840. https://doi.org/10.1073/pnas.140199597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chang J-K, Ni Y, Han L et al. (2017) Protein kinase D1 (PKD1) phosphorylation on Ser203 by type I p21-activated kinase (PAK) regulates PKD1 localization. J Biol Chem 292:9523–9539. https://doi.org/10.1074/jbc.M116.771394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Guise AJ, Mathias RA, Rowland EA, Yu F, Cristea IM (2014) Probing phosphorylation-dependent protein interactions within functional domains of histone deacetylase 5 (HDAC5). Proteomics 14:2156–2166. https://doi.org/10.1002/pmic.201400092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Harrison BC, Huynh K, Lundgaard GL et al. (2010) Protein kinase C-related kinase targets nuclear localization signals in a subset of class IIa histone deacetylases. FEBS Lett 584:1103–1110. https://doi.org/10.1016/j.febslet.2010.02.057

    Article  CAS  PubMed  Google Scholar 

  157. Lee C-W, Yang F-C, Chang H-Y et al (2014) Interaction between salt-inducible kinase 2 and protein phosphatase 2A regulates the activity of calcium/calmodulin-dependent protein kinase I and protein phosphatase methylesterase-1. J Biol Chem 289:21108–21119. https://doi.org/10.1074/jbc.M113.540229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Taniguchi M, Carreira MB, Smith LN, Zirlin BC, Neve RL, Cowan CW (2012) Histone deacetylase 5 limits cocaine reward through cAMP-induced nuclear import. Neuron 73:108–120. https://doi.org/10.1016/j.neuron.2011.10.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. von Blume J, Knippschild U, Dequiedt F et al (2007) Phosphorylation at Ser244 by CK1 determines nuclear localization and substrate targeting of PKD2. EMBO J 26:4619–4633. https://doi.org/10.1038/sj.emboj.7601891

    Article  CAS  Google Scholar 

  160. Shan P, Fan G, Sun L et al (2017) SIRT1 functions as a negative regulator of eukaryotic Poly(A)RNA transport. Curr Biol 27:2271–2284.e5. https://doi.org/10.1016/j.cub.2017.06.040

    Article  CAS  PubMed  Google Scholar 

  161. Ramakrishnan G, Davaakhuu G, Kaplun L et al (2014) Sirt2 deacetylase Is a novel AKT binding partner critical for AKT activation by insulin. J Biol Chem 289:6054–6066. https://doi.org/10.1074/jbc.M113.537266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Miteva YV, Cristea IM (2014) A proteomic perspective of sirtuin 6 (SIRT6) phosphorylation and interactions and their dependence on its catalytic activity. Mol Cell Proteomics 13:168–183. https://doi.org/10.1074/mcp.M113.032847

    Article  CAS  PubMed  Google Scholar 

  163. Bian Y, Song C, Cheng K et al (2014) An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics 96:253–262. https://doi.org/10.1016/j.jprot.2013.11.014

    Article  CAS  PubMed  Google Scholar 

  164. Pighi C, Gu T-L, Dalai I et al (2011) Phospho-proteomic analysis of mantle cell lymphoma cells suggests a pro-survival role of B-cell receptor signaling. Cell Oncol (Dordr) 34:141–153. https://doi.org/10.1007/s13402-011-0019-7

    Article  CAS  Google Scholar 

  165. Yu L-R, Zhu Z, Chan KC et al (2007) Improved titanium dioxide enrichment of phosphopeptides from HeLa cells and high confident phosphopeptide identification by cross-validation of MS/MS and MS/MS/MS spectra. J Proteome Res 6:4150–4162. https://doi.org/10.1021/pr070152u

    Article  CAS  PubMed  Google Scholar 

  166. Tsai C-F, Wang Y-T, Yen H-Y et al (2015) Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics. Nat Commun 6:6622. https://doi.org/10.1038/ncomms7622

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Seto Lab for support and discussions. Additionally, we thank our past and present colleagues for discussions and insights on HDACs. We apologize to those whose work was not cited in this paper due to space constraints. Funding for this work was awarded to ES by the National Institutes of Health (R01CA187040, R01CA169210).

Author information

Authors and Affiliations

Authors

Contributions

Both SB and ES conceived the idea for the article. The majority of the literature search and data analysis were performed by SB. SB wrote the first draft of the manuscript and ES critically revised the work.

Corresponding author

Correspondence to Edward Seto.

Ethics declarations

Conflict of interest

All authors declare that there are no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahl, S., Seto, E. Regulation of histone deacetylase activities and functions by phosphorylation and its physiological relevance. Cell. Mol. Life Sci. 78, 427–445 (2021). https://doi.org/10.1007/s00018-020-03599-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03599-4

Keywords

Navigation