Skip to main content

Advertisement

Log in

The role of lymphocytes and phagocytes in age-related macular degeneration (AMD)

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Age-related macular degeneration (AMD) is a leading cause of visual impairment of the elderly population. Since AMD is a multifactorial age-related disease with various genetic risk factors, the understanding of its complex pathophysiology is still limited. However, animal experiments, genome-wide association data and the molecular profiling of AMD patient samples have highlighted a key role of systemic and local immune processes that contribute to this chronic eye disease. In this overview article, we concentrate on the role of lymphocytes and mononuclear phagocytes and their interplay in triggering a persistent immune response in the AMD retina. We preferentially review findings from human immune cell analyses and complement these with related findings in experimental models. We conclude that both immune cell types as their signaling network may be a rich source to identify novel molecular targets for immunomodulation in AMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Jonas JB, Bourne RR, White RA et al (2014) Visual impairment and blindness due to macular diseases globally: a systematic review and meta-analysis. Am J Ophthalmol 158:808–815

    PubMed  Google Scholar 

  2. Chen Y, Bedell M, Zhang K (2010) Age-related macular degeneration: genetic and environmental factors of disease. Mol Interv 10:271–281

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wong WL, Su X, Li X et al (2014) Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health 2:e106–e116

    PubMed  Google Scholar 

  4. Penfold PL, Killingsworth MC, Sarks SH (1985) Senile macular degeneration: the involvement of immunocompetent cells. Graefes Arch Clin Exp Ophthalmol 223:69–76

    CAS  PubMed  Google Scholar 

  5. Xu H, Chen M, Forrester JV (2009) Para-inflammation in the aging retina. Prog Retin Eye Res 28:348–368

    PubMed  Google Scholar 

  6. Mullins RF, Warwick AN, Sohn EH, Lotery AJ (2017) From compliment to insult: genetics of the complement system in physiology and disease in the human retina. Hum Mol Genet 26:R51–R57

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Anderson DH, Mullins RF, Hageman GS, Johnson LV (2002) A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol 134:411–431

    CAS  PubMed  Google Scholar 

  8. Akhtar-Schafer I, Wang L, Krohne TU et al (2018) Modulation of three key innate immune pathways for the most common retinal degenerative diseases. EMBO Mol Med 10:e8259

    PubMed  PubMed Central  Google Scholar 

  9. Perez VL, Caspi RR (2015) Immune mechanisms in inflammatory and degenerative eye disease. Trends Immunol 36:354–363

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lechner J, Chen M, Hogg RE et al (2015) Alterations in circulating immune cells in neovascular age-related macular degeneration. Sci Rep 5:16754

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Subhi Y, Lykke Sorensen T (2017) New neovascular age-related macular degeneration is associated with systemic leucocyte activity. Acta Ophthalmol 95:472–480

    CAS  PubMed  Google Scholar 

  12. Subhi Y, Nielsen MK, Molbech CR et al (2017) T-cell differentiation and CD56+ levels in polypoidal choroidal vasculopathy and neovascular age-related macular degeneration. Aging (Albany NY) 9:2436–2452

    CAS  Google Scholar 

  13. Weng NP, Akbar AN, Goronzy J (2009) CD28(−) T cells: their role in the age-associated decline of immune function. Trends Immunol 30:306–312

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Faber C, Singh A, Kruger Falk M et al (2013) Age-related macular degeneration is associated with increased proportion of CD56(+) T cells in peripheral blood. Ophthalmology 120:2310–2316

    PubMed  Google Scholar 

  15. Ezzat MK, Hann CR, Vuk-Pavlovic S, Pulido JS (2008) Immune cells in the human choroid. Br J Ophthalmol 92:976–980

    PubMed  Google Scholar 

  16. Falk MK, Singh A, Faber C et al (2014) Dysregulation of CXCR3 expression on peripheral blood leukocytes in patients with neovascular age-related macular degeneration. Investig Ophthalmol Vis Sci 55:4050–4056

    CAS  Google Scholar 

  17. Lasagni L, Francalanci M, Annunziato F et al (2003) An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J Exp Med 197:1537–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Romagnani P, Annunziato F, Lasagni L et al (2001) Cell cycle-dependent expression of CXC chemokine receptor 3 by endothelial cells mediates angiostatic activity. J Clin Investig 107:53–63

    CAS  PubMed  Google Scholar 

  19. Falk MK, Singh A, Faber C et al (2014) CX3CL1/CX3CR1 and CCL2/CCR2 chemokine/chemokine receptor complex in patients with AMD. PLoS ONE 9:e112473

    PubMed  PubMed Central  Google Scholar 

  20. Raoul W, Auvynet C, Camelo S et al (2010) CCL2/CCR2 and CX3CL1/CX3CR1 chemokine axes and their possible involvement in age-related macular degeneration. J Neuroinflammation 7:87

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Combadiere C, Feumi C, Raoul W et al (2007) CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration. J Clin Investig 117:2920–2928

    CAS  PubMed  Google Scholar 

  22. Chen J, Wang W, Li Q (2017) Increased Th1/Th17 responses contribute to low-grade inflammation in age-related macular degeneration. Cell Physiol Biochem 44:357–367

    CAS  PubMed  Google Scholar 

  23. Singh A, Subhi Y, Krogh Nielsen M et al (2017) Systemic frequencies of T helper 1 and T helper 17 cells in patients with age-related macular degeneration: a case-control study. Sci Rep 7:605

    PubMed  PubMed Central  Google Scholar 

  24. Madelung CF, Falk MK, Sorensen TL (2015) The association between neovascular age-related macular degeneration and regulatory T cells in peripheral blood. Clin Ophthalmol 9:1147–1154

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou R, Horai R, Silver PB et al (2012) The living eye “disarms” uncommitted autoreactive T cells by converting them to Foxp3(+) regulatory cells following local antigen recognition. J Immunol 188:1742–1750

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Walport MJ (2001) Complement. First of two parts. N Engl J Med 344:1058–1066

    CAS  PubMed  Google Scholar 

  27. Liu B, Wei L, Meyerle C et al (2011) Complement component C5a promotes expression of IL-22 and IL-17 from human T cells and its implication in age-related macular degeneration. J Transl Med 9:1–12

    CAS  PubMed  Google Scholar 

  28. Zhao Z, Xu P, Jie Z et al (2014) Gammadelta T cells as a major source of IL-17 production during age-dependent RPE degeneration. Investig Ophthalmol Vis Sci 55:6580–6589

    CAS  Google Scholar 

  29. Hasegawa E, Sonoda KH, Shichita T et al (2013) IL-23-independent induction of IL-17 from gammadeltaT cells and innate lymphoid cells promotes experimental intraocular neovascularization. J Immunol 190:1778–1787

    CAS  PubMed  Google Scholar 

  30. Coughlin B, Schnabolk G, Joseph K et al (2016) Connecting the innate and adaptive immune responses in mouse choroidal neovascularization via the anaphylatoxin C5a and gammadeltaT-cells. Sci Rep 6:23794

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Penfold PL, Provis JM, Furby JH et al (1990) Autoantibodies to retinal astrocytes associated with age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 228:270–274

    CAS  PubMed  Google Scholar 

  32. Patel N, Ohbayashi M, Nugent AK et al (2005) Circulating anti-retinal antibodies as immune markers in age-related macular degeneration. Immunology 115:422–430

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Cherepanoff S, Mitchell P, Wang JJ, Gillies MC (2006) Retinal autoantibody profile in early age-related macular degeneration: preliminary findings from the Blue Mountains Eye Study. Clin Exp Ophthalmol 34:590–595

    PubMed  Google Scholar 

  34. Langmann T (2007) Microglia activation in retinal degeneration. J Leukoc Biol 81:1345–1351

    CAS  Google Scholar 

  35. Ma W, Coon S, Zhao L et al (2013) A2E accumulation influences retinal microglial activation and complement regulation. Neurobiol Aging 34:943–960

    CAS  PubMed  Google Scholar 

  36. Grunin M, Burstyn-Cohen T, Hagbi-Levi S et al (2012) Chemokine receptor expression in peripheral blood monocytes from patients with neovascular age-related macular degeneration. Investig Ophthalmol Vis Sci 53:5292–5300

    CAS  Google Scholar 

  37. Espinosa-Heidmann DG, Suner IJ, Hernandez EP et al (2003) Macrophage depletion diminishes lesion size and severity in experimental choroidal neovascularization. Investig Ophthalmol Vis Sci 44:3586–3592

    Google Scholar 

  38. Cherepanoff S, McMenamin P, Gillies MC et al (2010) Bruch’s membrane and choroidal macrophages in early and advanced age-related macular degeneration. Br J Ophthalmol 94:918–925

    CAS  PubMed  Google Scholar 

  39. Subhi Y, Krogh Nielsen M, Molbech CR et al (2017) CD11b and CD200 on circulating monocytes differentiate two angiographic subtypes of polypoidal choroidal vasculopathy. Investig Ophthalmol Vis Sci 58:5242–5250

    CAS  Google Scholar 

  40. Singh A, Falk MK, Hviid TV, Sorensen TL (2013) Increased expression of CD200 on circulating CD11b+ monocytes in patients with neovascular age-related macular degeneration. Ophthalmology 120:1029–1037

    PubMed  Google Scholar 

  41. Krogh Nielsen M, Subhi Y, Molbech CR et al (2019) Patients with a fast progression profile in geographic atrophy have increased CD200 expression on circulating monocytes. Clin Exp Ophthalmol 47:69–78

    PubMed  Google Scholar 

  42. Sennlaub F, Auvynet C, Calippe B et al (2013) CCR2(+) monocytes infiltrate atrophic lesions in age-related macular disease and mediate photoreceptor degeneration in experimental subretinal inflammation in Cx3cr1 deficient mice. EMBO Mol Med 5:1775–1793

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Newman AM, Gallo NB, Hancox LS et al (2012) Systems-level analysis of age-related macular degeneration reveals global biomarkers and phenotype-specific functional networks. Genome Med 4:16

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Raoul W, Keller N, Rodero M et al (2008) Role of the chemokine receptor CX3CR1 in the mobilization of phagocytic retinal microglial cells. J Neuroimmunol 198:56–61

    CAS  PubMed  Google Scholar 

  45. Will-Orrego A, Qiu Y, Fassbender ES et al (2018) Amount of mononuclear phagocyte infiltrate does not predict area of experimental choroidal neovascularization (CNV). J Ocul Pharmacol Ther 34:489–499

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang D, Elner SG, Lin LR et al (2009) Association of superoxide anions with retinal pigment epithelial cell apoptosis induced by mononuclear phagocytes. Investig Ophthalmol Vis Sci 50:4998–5005

    Google Scholar 

  47. Eandi CM, Charles Messance H, Augustin S et al (2016) Subretinal mononuclear phagocytes induce cone segment loss via IL-1beta. Elife 5:e16490

    PubMed  PubMed Central  Google Scholar 

  48. Calippe B, Augustin S, Beguier F et al (2017) Complement factor H inhibits CD47-mediated resolution of inflammation. Immunity 46:261–272

    CAS  PubMed  Google Scholar 

  49. Tan X, Fujiu K, Manabe I et al (2015) Choroidal neovascularization is inhibited via an intraocular decrease of inflammatory cells in mice lacking complement component C3. Sci Rep 5:15702

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Xi H, Katschke KJ Jr, Li Y et al (2016) IL-33 amplifies an innate immune response in the degenerating retina. J Exp Med 213:189–207

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Levy O, Lavalette S, Hu SJ et al (2015) APOE isoforms control pathogenic subretinal inflammation in age-related macular degeneration. J Neurosci 35:13568–13576

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Levy O, Calippe B, Lavalette S et al (2015) Apolipoprotein E promotes subretinal mononuclear phagocyte survival and chronic inflammation in age-related macular degeneration. EMBO Mol Med 7:211–226

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Taylor PR, Martinez-Pomares L, Stacey M et al (2005) Macrophage receptors and immune recognition. Annu Rev Immunol 23:901–944

    CAS  PubMed  Google Scholar 

  54. Cao X, Shen D, Patel MM et al (2011) Macrophage polarization in the maculae of age-related macular degeneration: a pilot study. Pathol Int 61:528–535

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Szatmari-Toth M, Kristof E, Vereb Z et al (2016) Clearance of autophagy-associated dying retinal pigment epithelial cells—a possible source for inflammation in age-related macular degeneration. Cell Death Dis 7:e2367

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Martin S, Tesse A, Hugel B et al (2004) Shed membrane particles from T lymphocytes impair endothelial function and regulate endothelial protein expression. Circulation 109:1653–1659

    PubMed  Google Scholar 

  57. Tahiri H, Omri S, Yang C et al (2016) Lymphocytic microparticles modulate angiogenic properties of macrophages in laser-induced choroidal neovascularization. Sci Rep 6:37391

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Cruz-Guilloty F, Perez VL (2011) Molecular medicine: defence against oxidative damage. Nature 478:42–43

    CAS  PubMed  Google Scholar 

  59. Blasiak J, Piechota M, Pawlowska E et al (2017) Cellular senescence in age-related macular degeneration: can autophagy and DNA damage response play a role? Oxid Med Cell Longev 2017:5293258

    PubMed  PubMed Central  Google Scholar 

  60. Cruz-Guilloty F, Saeed AM, Echegaray JJ et al (2013) Infiltration of proinflammatory m1 macrophages into the outer retina precedes damage in a mouse model of age-related macular degeneration. Int J Inflamm 2013:503725

    Google Scholar 

  61. Hollyfield JG, Bonilha VL, Rayborn ME et al (2008) Oxidative damage-induced inflammation initiates age-related macular degeneration. Nat Med 14:194–198

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hollyfield JG, Perez VL, Salomon RG (2010) A hapten generated from an oxidation fragment of docosahexaenoic acid is sufficient to initiate age-related macular degeneration. Mol Neurobiol 41:290–298

    CAS  PubMed  Google Scholar 

  63. Singh A, Faber C, Falk M et al (2012) Altered expression of CD46 and CD59 on leukocytes in neovascular age-related macular degeneration. Am J Ophthalmol 154(193–199):e2

    Google Scholar 

  64. Haas P, Aggermann T, Nagl M et al (2011) Implication of CD21, CD35, and CD55 in the pathogenesis of age-related macular degeneration. Am J Ophthalmol 152(396–399):e1

    Google Scholar 

  65. Miller JW (2016) Beyond VEGF—the Weisenfeld lecture. Investig Ophthalmol Vis Sci 57:6911–6918

    Google Scholar 

  66. Nussenblatt RB, Byrnes G, Sen HN et al (2010) A randomized pilot study of systemic immunosuppression in the treatment of age-related macular degeneration with choroidal neovascularization. Retina 30:1579–1587

    PubMed  PubMed Central  Google Scholar 

  67. Balser C, Wolf A, Herb M, Langmann T (2019) Co-inhibition of PGF and VEGF blocks their expression in mononuclear phagocytes and limits neovascularization and leakage in the murine retina. J Neuroinflammation 16:26

    PubMed  PubMed Central  Google Scholar 

  68. Luckoff A, Caramoy A, Scholz R et al (2016) Interferon-beta signaling in retinal mononuclear phagocytes attenuates pathological neovascularization. EMBO Mol Med 8:670–678

    PubMed  PubMed Central  Google Scholar 

  69. Hasegawa E, Oshima Y, Takeda A et al (2012) IL-27 inhibits pathophysiological intraocular neovascularization due to laser burn. J Leukoc Biol 91:267–273

    CAS  PubMed  Google Scholar 

  70. Holz FG, Sadda SR, Busbee B et al (2018) Efficacy and safety of lampalizumab for geographic atrophy due to age-related macular degeneration: chroma and spectri phase 3 randomized clinical trials. JAMA Ophthalmol 136:666–677

    PubMed  PubMed Central  Google Scholar 

  71. Lipo E, Cashman SM, Kumar-Singh R (2013) Aurintricarboxylic acid inhibits complement activation, membrane attack complex, and choroidal neovascularization in a model of macular degeneration. Investig Ophthalmol Vis Sci 54:7107–7114

    Google Scholar 

  72. Toomey CB, Landowski M, Klingeborn M et al (2018) Effect of anti-C5a therapy in a murine model of early/intermediate dry age-related macular degeneration. Investig Ophthalmol Vis Sci 59:662–673

    CAS  Google Scholar 

Download references

Acknowledgements

The research in our laboratory is supported by funds from the Deutsche Forschungsgemeinschaft (FOR2240, LA1209/11–2), the Helmut Ecker Foundation (03/17), the Pro Retina Foundation (1/2015), the Hans and Marlies Stock Foundation (S061-10.013), and the Velux Foundation (Project 967). We thank Dr. Marion Rozowski for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Langmann.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behnke, V., Wolf, A. & Langmann, T. The role of lymphocytes and phagocytes in age-related macular degeneration (AMD). Cell. Mol. Life Sci. 77, 781–788 (2020). https://doi.org/10.1007/s00018-019-03419-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03419-4

Keywords

Navigation