Skip to main content
Log in

Structural biology of telomeres and telomerase

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Telomeres are protein–DNA complexes that protect chromosome ends from illicit ligation and resection. Telomerase is a ribonucleoprotein enzyme that synthesizes telomeric DNA to counter telomere shortening. Human telomeres are composed of complexes between telomeric DNA and a six-protein complex known as shelterin. The shelterin proteins TRF1 and TRF2 provide the binding affinity and specificity for double-stranded telomeric DNA, while the POT1-TPP1 shelterin subcomplex coats the single-stranded telomeric G-rich overhang that is characteristic of all our chromosome ends. By capping chromosome ends, shelterin protects telomeric DNA from unwanted degradation and end-to-end fusion events. Structures of the human shelterin proteins reveal a network of constitutive and context-specific interactions. The shelterin protein–DNA structures reveal the basis for both the high affinity and DNA sequence specificity of these interactions, and explain how shelterin efficiently protects chromosome ends from genome instability. Several protein–protein interactions, many provided by the shelterin component TIN2, are critical for upholding the end-protection function of shelterin. A survey of these protein–protein interfaces within shelterin reveals a series of “domain–peptide” interactions that allow for efficient binding and adaptability towards new functions. While the modular nature of shelterin has facilitated its part-by-part structural characterization, the interdependence of subunits within telomerase has made its structural solution more challenging. However, the exploitation of several homologs in combination with recent advancements in cryo-EM capabilities has led to an exponential increase in our knowledge of the structural biology underlying telomerase function. Telomerase homologs from a wide range of eukaryotes show a typical retroviral reverse transcriptase-like protein core reinforced with elements that deliver telomerase-specific functions including recruitment to telomeres and high telomere-repeat addition processivity. In addition to providing the template for reverse transcription, the RNA component of telomerase provides a scaffold for the catalytic and accessory protein subunits, defines the limits of the telomeric repeat sequence, and plays a critical role in RNP assembly, stability, and trafficking. While a high-resolution definition of the human telomerase structure is only beginning to emerge, the quick pace of technical progress forecasts imminent breakthroughs in this area. Here, we review the structural biology surrounding telomeres and telomerase to provide a molecular description of mammalian chromosome end protection and end replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Palm W, de Lange T (2008) How shelterin protects mammalian telomeres. Annu Rev Genet 42:301–334. https://doi.org/10.1146/annurev.genet.41.110306.130350

    Article  CAS  PubMed  Google Scholar 

  2. Levy MZ, Allsopp RC, Futcher AB, Greider CW, Harley CB (1992) Telomere end-replication problem and cell aging. J Mol Biol 225(4):951–960

    Article  CAS  Google Scholar 

  3. Greider CW, Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43(2 Pt 1):405–413

    Article  CAS  Google Scholar 

  4. Lingner J, Hughes TR, Shevchenko A, Mann M, Lundblad V, Cech TR (1997) Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276(5312):561–567

    Article  CAS  Google Scholar 

  5. Counter CM, Meyerson M, Eaton EN, Weinberg RA (1997) The catalytic subunit of yeast telomerase. Proc Natl Acad Sci USA 94(17):9202–9207

    Article  CAS  Google Scholar 

  6. Meyerson M, Counter CM, Eaton EN, Ellisen LW, Steiner P, Caddle SD, Ziaugra L, Beijersbergen RL, Davidoff MJ, Liu Q, Bacchetti S, Haber DA, Weinberg RA (1997) hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 90(4):785–795

    Article  CAS  Google Scholar 

  7. Greider CW, Blackburn EH (1987) The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 51(6):887–898

    Article  CAS  Google Scholar 

  8. Greider CW, Blackburn EH (1989) A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337(6205):331–337. https://doi.org/10.1038/337331a0

    Article  CAS  PubMed  Google Scholar 

  9. Shay JW, Wright WE (2010) Telomeres and telomerase in normal and cancer stem cells. FEBS Lett 584(17):3819–3825. https://doi.org/10.1016/j.febslet.2010.05.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dokal I (2011) Dyskeratosis congenita. Hematol Am Soc Hematol Educ Program 2011:480–486. https://doi.org/10.1182/asheducation-2011.1.480

    Article  Google Scholar 

  11. Jones M, Bisht K, Savage SA, Nandakumar J, Keegan CE, Maillard I (2016) The shelterin complex and hematopoiesis. J Clin Invest 126(5):1621–1629. https://doi.org/10.1172/JCI84547

    Article  PubMed  PubMed Central  Google Scholar 

  12. Savage SA (2014) Human telomeres and telomere biology disorders. Prog Mol Biol Transl Sci 125:41–66. https://doi.org/10.1016/B978-0-12-397898-1.00002-5

    Article  CAS  PubMed  Google Scholar 

  13. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279(5349):349–352

    Article  CAS  Google Scholar 

  14. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266(5193):2011–2015

    Article  CAS  Google Scholar 

  15. Wright WE, Pereira-Smith OM, Shay JW (1989) Reversible cellular senescence: implications for immortalization of normal human diploid fibroblasts. Mol Cell Biol 9(7):3088–3092

    Article  CAS  Google Scholar 

  16. Stewart SA, Weinberg RA (2006) Telomeres: cancer to human aging. Annu Rev Cell Dev Biol 22:531–557. https://doi.org/10.1146/annurev.cellbio.22.010305.104518

    Article  CAS  PubMed  Google Scholar 

  17. Shay JW, Wright WE (2011) Role of telomeres and telomerase in cancer. Semin Cancer Biol 21(6):349–353. https://doi.org/10.1016/j.semcancer.2011.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bianchi A, Smith S, Chong L, Elias P, de Lange T (1997) TRF1 is a dimer and bends telomeric DNA. EMBO J 16(7):1785–1794. https://doi.org/10.1093/emboj/16.7.1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Broccoli D, Chong L, Oelmann S, Fernald AA, Marziliano N, van Steensel B, Kipling D, Le Beau MM, de Lange T (1997) Comparison of the human and mouse genes encoding the telomeric protein, TRF1: chromosomal localization, expression and conserved protein domains. Hum Mol Genet 6(1):69–76

    Article  CAS  Google Scholar 

  20. Bilaud T, Brun C, Ancelin K, Koering CE, Laroche T, Gilson E (1997) Telomeric localization of TRF2, a novel human telobox protein. Nat Genet 17(2):236–239. https://doi.org/10.1038/ng1097-236

    Article  CAS  PubMed  Google Scholar 

  21. Broccoli D, Smogorzewska A, Chong L, de Lange T (1997) Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat Genet 17(2):231–235. https://doi.org/10.1038/ng1097-231

    Article  CAS  PubMed  Google Scholar 

  22. Hardy CF, Sussel L, Shore D (1992) A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation. Genes Dev 6(5):801–814

    Article  CAS  Google Scholar 

  23. Baumann P, Cech TR (2001) Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292(5519):1171–1175. https://doi.org/10.1126/science.1060036

    Article  CAS  PubMed  Google Scholar 

  24. Liu D, Safari A, O’Connor MS, Chan DW, Laegeler A, Qin J, Songyang Z (2004) PTOP interacts with POT1 and regulates its localization to telomeres. Nat Cell Biol 6(7):673–680. https://doi.org/10.1038/ncb1142

    Article  CAS  PubMed  Google Scholar 

  25. Ye JZ, Hockemeyer D, Krutchinsky AN, Loayza D, Hooper SM, Chait BT, de Lange T (2004) POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex. Genes Dev 18(14):1649–1654. https://doi.org/10.1101/gad.1215404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Houghtaling BR, Cuttonaro L, Chang W, Smith S (2004) A dynamic molecular link between the telomere length regulator TRF1 and the chromosome end protector TRF2. Curr Biol 14(18):1621–1631. https://doi.org/10.1016/j.cub.2004.08.052

    Article  CAS  PubMed  Google Scholar 

  27. Li B, Oestreich S, de Lange T (2000) Identification of human Rap1: implications for telomere evolution. Cell 101(5):471–483

    Article  CAS  Google Scholar 

  28. Kim SH, Kaminker P, Campisi J (1999) TIN2, a new regulator of telomere length in human cells. Nat Genet 23(4):405–412. https://doi.org/10.1038/70508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lei M, Podell ER, Cech TR (2004) Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection. Nat Struct Mol Biol 11(12):1223–1229. https://doi.org/10.1038/nsmb867

    Article  CAS  PubMed  Google Scholar 

  30. Nandakumar J, Cech TR (2013) Finding the end: recruitment of telomerase to telomeres. Nat Rev Mol Cell Biol 14(2):69–82. https://doi.org/10.1038/nrm3505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bhalla N, Dernburg AF (2008) Prelude to a division. Annu Rev Cell Dev Biol 24:397–424. https://doi.org/10.1146/annurev.cellbio.23.090506.123245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hiraoka Y, Dernburg AF (2009) The SUN rises on meiotic chromosome dynamics. Dev Cell 17(5):598–605. https://doi.org/10.1016/j.devcel.2009.10.014

    Article  CAS  PubMed  Google Scholar 

  33. Marston AL, Amon A (2004) Meiosis: cell-cycle controls shuffle and deal. Nat Rev Mol Cell Biol 5(12):983–997. https://doi.org/10.1038/nrm1526

    Article  PubMed  Google Scholar 

  34. Scherthan H (2001) A bouquet makes ends meet. Nat Rev Mol Cell Biol 2(8):621–627. https://doi.org/10.1038/35085086

    Article  CAS  PubMed  Google Scholar 

  35. Scherthan H, Weich S, Schwegler H, Heyting C, Harle M, Cremer T (1996) Centromere and telomere movements during early meiotic prophase of mouse and man are associated with the onset of chromosome pairing. J Cell Biol 134(5):1109–1125

    Article  CAS  Google Scholar 

  36. Watanabe Y (2012) Geometry and force behind kinetochore orientation: lessons from meiosis. Nat Rev Mol Cell Biol 13(6):370–382. https://doi.org/10.1038/nrm3349

    Article  CAS  PubMed  Google Scholar 

  37. Shibuya H, Hernandez-Hernandez A, Morimoto A, Negishi L, Hoog C, Watanabe Y (2015) MAJIN links telomeric DNA to the nuclear membrane by exchanging telomere cap. Cell 163(5):1252–1266. https://doi.org/10.1016/j.cell.2015.10.030

    Article  CAS  PubMed  Google Scholar 

  38. Gray JT, Celander DW, Price CM, Cech TR (1991) Cloning and expression of genes for the Oxytricha telomere-binding protein: specific subunit interactions in the telomeric complex. Cell 67(4):807–814

    Article  CAS  Google Scholar 

  39. Horvath MP, Schweiker VL, Bevilacqua JM, Ruggles JA, Schultz SC (1998) Crystal structure of the Oxytricha nova telomere end binding protein complexed with single strand DNA. Cell 95(7):963–974

    Article  CAS  Google Scholar 

  40. Buczek P, Horvath MP (2006) Structural reorganization and the cooperative binding of single-stranded telomere DNA in Sterkiella nova. J Biol Chem 281(52):40124–40134. https://doi.org/10.1074/jbc.M607749200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lei M, Podell ER, Baumann P, Cech TR (2003) DNA self-recognition in the structure of Pot1 bound to telomeric single-stranded DNA. Nature 426(6963):198–203. https://doi.org/10.1038/nature02092

    Article  CAS  PubMed  Google Scholar 

  42. Dickey TH, McKercher MA, Wuttke DS (2013) Nonspecific recognition is achieved in Pot1pC through the use of multiple binding modes. Structure 21(1):121–132. https://doi.org/10.1016/j.str.2012.10.015

    Article  CAS  PubMed  Google Scholar 

  43. Denchi EL, de Lange T (2007) Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 448(7157):1068–1071. https://doi.org/10.1038/nature06065

    Article  CAS  PubMed  Google Scholar 

  44. Fan J, Pavletich NP (2012) Structure and conformational change of a replication protein A heterotrimer bound to ssDNA. Genes Dev 26(20):2337–2347. https://doi.org/10.1101/gad.194787.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Takai KK, Kibe T, Donigian JR, Frescas D, de Lange T (2011) Telomere protection by TPP1/POT1 requires tethering to TIN2. Mol Cell 44(4):647–659. https://doi.org/10.1016/j.molcel.2011.08.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gu P, Wang Y, Bisht KK, Wu L, Kukova L, Smith EM, Xiao Y, Bailey SM, Lei M, Nandakumar J, Chang S (2017) Pot1 OB-fold mutations unleash telomere instability to initiate tumorigenesis. Oncogene 36(14):1939–1951. https://doi.org/10.1038/onc.2016.405

    Article  CAS  PubMed  Google Scholar 

  47. Pinzaru AM, Hom RA, Beal A, Phillips AF, Ni E, Cardozo T, Nair N, Choi J, Wuttke DS, Sfeir A, Denchi EL (2016) Telomere replication stress induced by POT1 inactivation accelerates tumorigenesis. Cell Rep 15(10):2170–2184. https://doi.org/10.1016/j.celrep.2016.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Azzalin CM, Lingner J (2015) Telomere functions grounding on TERRA firma. Trends Cell Biol 25(1):29–36. https://doi.org/10.1016/j.tcb.2014.08.007

    Article  CAS  PubMed  Google Scholar 

  49. Azzalin CM, Reichenbach P, Khoriauli L, Giulotto E, Lingner J (2007) Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318(5851):798–801. https://doi.org/10.1126/science.1147182

    Article  CAS  PubMed  Google Scholar 

  50. Nandakumar J, Podell ER, Cech TR (2010) How telomeric protein POT1 avoids RNA to achieve specificity for single-stranded DNA. Proc Natl Acad Sci USA 107(2):651–656. https://doi.org/10.1073/pnas.0911099107

    Article  PubMed  Google Scholar 

  51. Rice C, Skordalakes E (2016) Structure and function of the telomeric CST complex. Comput Struct Biotechnol J 14:161–167. https://doi.org/10.1016/j.csbj.2016.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen LY, Redon S, Lingner J (2012) The human CST complex is a terminator of telomerase activity. Nature 488(7412):540–544. https://doi.org/10.1038/nature11269

    Article  CAS  PubMed  Google Scholar 

  53. Casteel DE, Zhuang S, Zeng Y, Perrino FW, Boss GR, Goulian M, Pilz RB (2009) A DNA polymerase-{alpha}{middle dot}primase cofactor with homology to replication protein A-32 regulates DNA replication in mammalian cells. J Biol Chem 284(9):5807–5818. https://doi.org/10.1074/jbc.M807593200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu P, Takai H, de Lange T (2012) Telomeric 3′ overhangs derive from resection by Exo1 and Apollo and fill-in by POT1b-associated CST. Cell 150(1):39–52. https://doi.org/10.1016/j.cell.2012.05.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mirman Z, Lottersberger F, Takai H, Kibe T, Gong Y, Takai K, Bianchi A, Zimmermann M, Durocher D, de Lange T (2018) 53BP1-RIF1-shieldin counteracts DSB resection through CST- and Polalpha-dependent fill-in. Nature 560(7716):112–116. https://doi.org/10.1038/s41586-018-0324-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shastrula PK, Rice CT, Wang Z, Lieberman PM, Skordalakes E (2018) Structural and functional analysis of an OB-fold in human Ctc1 implicated in telomere maintenance and bone marrow syndromes. Nucleic Acids Res 46(2):972–984. https://doi.org/10.1093/nar/gkx1213

    Article  CAS  PubMed  Google Scholar 

  57. Bryan C, Rice C, Harkisheimer M, Schultz DC, Skordalakes E (2013) Structure of the human telomeric Stn1-Ten1 capping complex. PLoS One 8(6):e66756. https://doi.org/10.1371/journal.pone.0066756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gelinas AD, Paschini M, Reyes FE, Heroux A, Batey RT, Lundblad V, Wuttke DS (2009) Telomere capping proteins are structurally related to RPA with an additional telomere-specific domain. Proc Natl Acad Sci USA 106(46):19298–19303. https://doi.org/10.1073/pnas.0909203106

    Article  PubMed  Google Scholar 

  59. Sun J, Yu EY, Yang Y, Confer LA, Sun SH, Wan K, Lue NF, Lei M (2009) Stn1-Ten1 is an Rpa2-Rpa3-like complex at telomeres. Genes Dev 23(24):2900–2914. https://doi.org/10.1101/gad.1851909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chastain M, Zhou Q, Shiva O, Fadri-Moskwik M, Whitmore L, Jia P, Dai X, Huang C, Ye P, Chai W (2016) Human CST facilitates genome-wide RAD51 recruitment to GC-rich repetitive sequences in response to replication stress. Cell Rep 16(5):1300–1314. https://doi.org/10.1016/j.celrep.2016.06.077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stewart JA, Wang F, Chaiken MF, Kasbek C, Chastain PD 2nd, Wright WE, Price CM (2012) Human CST promotes telomere duplex replication and general replication restart after fork stalling. EMBO J 31(17):3537–3549. https://doi.org/10.1038/emboj.2012.215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chen C, Gu P, Wu J, Chen X, Niu S, Sun H, Wu L, Li N, Peng J, Shi S, Fan C, Huang M, Wong CC, Gong Q, Kumar-Sinha C, Zhang R, Pusztai L, Rai R, Chang S, Lei M (2017) Structural insights into POT1-TPP1 interaction and POT1 C-terminal mutations in human cancer. Nat Commun 8:14929. https://doi.org/10.1038/ncomms14929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rice C, Shastrula PK, Kossenkov AV, Hills R, Baird DM, Showe LC, Doukov T, Janicki S, Skordalakes E (2017) Structural and functional analysis of the human POT1-TPP1 telomeric complex. Nat Commun 8:14928. https://doi.org/10.1038/ncomms14928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hockemeyer D, Palm W, Else T, Daniels JP, Takai KK, Ye JZ, Keegan CE, de Lange T, Hammer GD (2007) Telomere protection by mammalian Pot1 requires interaction with Tpp1. Nat Struct Mol Biol 14(8):754–761. https://doi.org/10.1038/nsmb1270

    Article  CAS  PubMed  Google Scholar 

  65. Gong Y, de Lange T (2010) A Shld1-controlled POT1a provides support for repression of ATR signaling at telomeres through RPA exclusion. Mol Cell 40(3):377–387. https://doi.org/10.1016/j.molcel.2010.10.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang F, Podell ER, Zaug AJ, Yang Y, Baciu P, Cech TR, Lei M (2007) The POT1-TPP1 telomere complex is a telomerase processivity factor. Nature 445(7127):506–510. https://doi.org/10.1038/nature05454

    Article  CAS  PubMed  Google Scholar 

  67. Xin H, Liu D, Wan M, Safari A, Kim H, Sun W, O’Connor MS, Songyang Z (2007) TPP1 is a homologue of ciliate TEBP-beta and interacts with POT1 to recruit telomerase. Nature 445(7127):559–562. https://doi.org/10.1038/nature05469

    Article  CAS  PubMed  Google Scholar 

  68. Abreu E, Aritonovska E, Reichenbach P, Cristofari G, Culp B, Terns RM, Lingner J, Terns MP (2010) TIN2-tethered TPP1 recruits human telomerase to telomeres in vivo. Mol Cell Biol 30(12):2971–2982. https://doi.org/10.1128/MCB.00240-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nandakumar J, Bell CF, Weidenfeld I, Zaug AJ, Leinwand LA, Cech TR (2012) The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity. Nature 492(7428):285–289. https://doi.org/10.1038/nature11648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sexton AN, Youmans DT, Collins K (2012) Specificity requirements for human telomere protein interaction with telomerase holoenzyme. J Biol Chem 287(41):34455–34464. https://doi.org/10.1074/jbc.M112.394767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhong FL, Batista LF, Freund A, Pech MF, Venteicher AS, Artandi SE (2012) TPP1 OB-fold domain controls telomere maintenance by recruiting telomerase to chromosome ends. Cell 150(3):481–494. https://doi.org/10.1016/j.cell.2012.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bisht K, Smith EM, Tesmer VM, Nandakumar J (2016) Structural and functional consequences of a disease mutation in the telomere protein TPP1. Proc Natl Acad Sci USA 113(46):13021–13026. https://doi.org/10.1073/pnas.1605685113

    Article  CAS  PubMed  Google Scholar 

  73. Guo Y, Kartawinata M, Li J, Pickett HA, Teo J, Kilo T, Barbaro PM, Keating B, Chen Y, Tian L, Al-Odaib A, Reddel RR, Christodoulou J, Xu X, Hakonarson H, Bryan TM (2014) Inherited bone marrow failure associated with germline mutation of ACD, the gene encoding telomere protein TPP1. Blood 124(18):2767–2774. https://doi.org/10.1182/blood-2014-08-596445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kocak H, Ballew BJ, Bisht K, Eggebeen R, Hicks BD, Suman S, O’Neil A, Giri N, Laboratory NDCGR, Group NDCSW, Maillard I, Alter BP, Keegan CE, Nandakumar J, Savage SA (2014) Hoyeraal-hreidarsson syndrome caused by a germline mutation in the TEL patch of the telomere protein TPP1. Genes Dev 28(19):2090–2102. https://doi.org/10.1101/gad.248567.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Grill S, Tesmer VM, Nandakumar J (2018) The N terminus of the OB domain of telomere protein TPP1 Is critical for telomerase action. Cell Rep 22(5):1132–1140. https://doi.org/10.1016/j.celrep.2018.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Schmidt JC, Dalby AB, Cech TR (2014) Identification of human TERT elements necessary for telomerase recruitment to telomeres. Elife. https://doi.org/10.7554/eLife.03563

    Article  PubMed  PubMed Central  Google Scholar 

  77. Chong L, van Steensel B, Broccoli D, Erdjument-Bromage H, Hanish J, Tempst P, de Lange T (1995) A human telomeric protein. Science 270(5242):1663–1667

    Article  CAS  Google Scholar 

  78. Sfeir A, de Lange T (2012) Removal of shelterin reveals the telomere end-protection problem. Science 336(6081):593–597. https://doi.org/10.1126/science.1218498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Celli GB, de Lange T (2005) DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nat Cell Biol 7(7):712–718. https://doi.org/10.1038/ncb1275

    Article  CAS  PubMed  Google Scholar 

  80. Karlseder J, Kachatrian L, Takai H, Mercer K, Hingorani S, Jacks T, de Lange T (2003) Targeted deletion reveals an essential function for the telomere length regulator Trf1. Mol Cell Biol 23(18):6533–6541

    Article  CAS  Google Scholar 

  81. Sfeir A, Kosiyatrakul ST, Hockemeyer D, MacRae SL, Karlseder J, Schildkraut CL, de Lange T (2009) Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 138(1):90–103. https://doi.org/10.1016/j.cell.2009.06.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Karlseder J, Broccoli D, Dai Y, Hardy S, de Lange T (1999) p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 283(5406):1321–1325

    Article  CAS  Google Scholar 

  83. Karlseder J, Hoke K, Mirzoeva OK, Bakkenist C, Kastan MB, Petrini JH, de Lange T (2004) The telomeric protein TRF2 binds the ATM kinase and can inhibit the ATM-dependent DNA damage response. PLoS Biol 2(8):E240. https://doi.org/10.1371/journal.pbio.0020240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Takai H, Smogorzewska A, de Lange T (2003) DNA damage foci at dysfunctional telomeres. Curr Biol 13(17):1549–1556

    Article  CAS  Google Scholar 

  85. Benarroch-Popivker D, Pisano S, Mendez-Bermudez A, Lototska L, Kaur P, Bauwens S, Djerbi N, Latrick CM, Fraisier V, Pei B, Gay A, Jaune E, Foucher K, Cherfils-Vicini J, Aeby E, Miron S, Londono-Vallejo A, Ye J, Le Du MH, Wang H, Gilson E, Giraud-Panis MJ (2016) TRF2-mediated control of telomere DNA topology as a mechanism for chromosome-end protection. Mol Cell 61(2):274–286. https://doi.org/10.1016/j.molcel.2015.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Doksani Y, Wu JY, de Lange T, Zhuang X (2013) Super-resolution fluorescence imaging of telomeres reveals TRF2-dependent T-loop formation. Cell 155(2):345–356. https://doi.org/10.1016/j.cell.2013.09.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T (1999) Mammalian telomeres end in a large duplex loop. Cell 97(4):503–514

    Article  CAS  Google Scholar 

  88. Chen Y, Yang Y, van Overbeek M, Donigian JR, Baciu P, de Lange T, Lei M (2008) A shared docking motif in TRF1 and TRF2 used for differential recruitment of telomeric proteins. Science 319(5866):1092–1096. https://doi.org/10.1126/science.1151804

    Article  CAS  PubMed  Google Scholar 

  89. Hanaoka S, Nagadoi A, Nishimura Y (2005) Comparison between TRF2 and TRF1 of their telomeric DNA-bound structures and DNA-binding activities. Protein Sci 14(1):119–130. https://doi.org/10.1110/ps.04983705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nishikawa T, Okamura H, Nagadoi A, Koig P, Rhodes D, Nishimura Y (2001) Structure of the DNA-binding domain of human telomeric protein, TRF1 and its interaction with telomeric DNA. Nucleic Acids Res Suppl 1(1):273–274

    Article  Google Scholar 

  91. Nishikawa T, Okamura H, Nagadoi A, Konig P, Rhodes D, Nishimura Y (2001) Solution structure of a telomeric DNA complex of human TRF1. Structure 9(12):1237–1251

    Article  CAS  Google Scholar 

  92. Court R, Chapman L, Fairall L, Rhodes D (2005) How the human telomeric proteins TRF1 and TRF2 recognize telomeric DNA: a view from high-resolution crystal structures. EMBO Rep 6(1):39–45. https://doi.org/10.1038/sj.embor.7400314

    Article  CAS  PubMed  Google Scholar 

  93. Fairall L, Chapman L, Moss H, de Lange T, Rhodes D (2001) Structure of the TRFH dimerization domain of the human telomeric proteins TRF1 and TRF2. Mol Cell 8(2):351–361

    Article  CAS  Google Scholar 

  94. Frescas D, de Lange T (2014) TRF2-tethered TIN2 can mediate telomere protection by TPP1/POT1. Mol Cell Biol 34(7):1349–1362. https://doi.org/10.1128/MCB.01052-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pendlebury DF, Fujiwara Y, Tesmer VM, Smith EM, Shibuya H, Watanabe Y, Nandakumar J (2017) Dissecting the telomere-inner nuclear membrane interface formed in meiosis. Nat Struct Mol Biol 24(12):1064–1072. https://doi.org/10.1038/nsmb.3493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Shibuya H, Ishiguro K, Watanabe Y (2014) The TRF1-binding protein TERB1 promotes chromosome movement and telomere rigidity in meiosis. Nat Cell Biol 16(2):145–156. https://doi.org/10.1038/ncb2896

    Article  CAS  PubMed  Google Scholar 

  97. Daniel K, Trankner D, Wojtasz L, Shibuya H, Watanabe Y, Alsheimer M, Toth A (2014) Mouse CCDC79 (TERB1) is a meiosis-specific telomere associated protein. BMC Cell Biol 15:17. https://doi.org/10.1186/1471-2121-15-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang J, Tu Z, Watanabe Y, Shibuya H (2017) Distinct TERB1 domains regulate different protein interactions in meiotic telomere movement. Cell Rep 21(7):1715–1726. https://doi.org/10.1016/j.celrep.2017.10.061

    Article  CAS  PubMed  Google Scholar 

  99. Long J, Huang C, Chen Y, Zhang Y, Shi S, Wu L, Liu Y, Liu C, Wu J, Lei M (2017) Telomeric TERB1-TRF1 interaction is crucial for male meiosis. Nat Struct Mol Biol 24(12):1073–1080. https://doi.org/10.1038/nsmb.3496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rai R, Hu C, Broton C, Chen Y, Lei M, Chang S (2017) NBS1 phosphorylation status dictates repair choice of dysfunctional telomeres. Mol Cell 65(5):801–817. https://doi.org/10.1016/j.molcel.2017.01.016(e804)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rai R, Chen Y, Lei M, Chang S (2016) TRF2-RAP1 is required to protect telomeres from engaging in homologous recombination-mediated deletions and fusions. Nat Commun 7:10881. https://doi.org/10.1038/ncomms10881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sfeir A, Kabir S, van Overbeek M, Celli GB, de Lange T (2010) Loss of Rap1 induces telomere recombination in the absence of NHEJ or a DNA damage signal. Science 327(5973):1657–1661. https://doi.org/10.1126/science.1185100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chen Y, Rai R, Zhou ZR, Kanoh J, Ribeyre C, Yang Y, Zheng H, Damay P, Wang F, Tsujii H, Hiraoka Y, Shore D, Hu HY, Chang S, Lei M (2011) A conserved motif within RAP1 has diversified roles in telomere protection and regulation in different organisms. Nat Struct Mol Biol 18(2):213–221. https://doi.org/10.1038/nsmb.1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gaullier G, Miron S, Pisano S, Buisson R, Le Bihan YV, Tellier-Lebegue C, Messaoud W, Roblin P, Guimaraes BG, Thai R, Giraud-Panis MJ, Gilson E, Le Du MH (2016) A higher-order entity formed by the flexible assembly of RAP1 with TRF2. Nucleic Acids Res 44(4):1962–1976. https://doi.org/10.1093/nar/gkv1531

    Article  PubMed  PubMed Central  Google Scholar 

  105. Schmutz I, Timashev L, Xie W, Patel DJ, de Lange T (2017) TRF2 binds branched DNA to safeguard telomere integrity. Nat Struct Mol Biol 24(9):734–742. https://doi.org/10.1038/nsmb.3451

    Article  CAS  PubMed  Google Scholar 

  106. Gonzalez-Prieto R, Cuijpers SA, Luijsterburg MS, van Attikum H, Vertegaal AC (2015) SUMOylation and PARylation cooperate to recruit and stabilize SLX4 at DNA damage sites. EMBO Rep 16(4):512–519. https://doi.org/10.15252/embr.201440017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Vannier JB, Pavicic-Kaltenbrunner V, Petalcorin MI, Ding H, Boulton SJ (2012) RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity. Cell 149(4):795–806. https://doi.org/10.1016/j.cell.2012.03.030

    Article  CAS  PubMed  Google Scholar 

  108. O’Connor MS, Safari A, Xin H, Liu D, Songyang Z (2006) A critical role for TPP1 and TIN2 interaction in high-order telomeric complex assembly. Proc Natl Acad Sci USA 103(32):11874–11879. https://doi.org/10.1073/pnas.0605303103

    Article  CAS  PubMed  Google Scholar 

  109. Kim SH, Beausejour C, Davalos AR, Kaminker P, Heo SJ, Campisi J (2004) TIN2 mediates functions of TRF2 at human telomeres. J Biol Chem 279(42):43799–43804. https://doi.org/10.1074/jbc.M408650200

    Article  CAS  PubMed  Google Scholar 

  110. Hu C, Rai R, Huang C, Broton C, Long J, Xu Y, Xue J, Lei M, Chang S, Chen Y (2017) Structural and functional analyses of the mammalian TIN2-TPP1-TRF2 telomeric complex. Cell Res 27(12):1485–1502. https://doi.org/10.1038/cr.2017.144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lim CJ, Zaug AJ, Kim HJ, Cech TR (2017) Reconstitution of human shelterin complexes reveals unexpected stoichiometry and dual pathways to enhance telomerase processivity. Nat Commun 8(1):1075. https://doi.org/10.1038/s41467-017-01313-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhang Q, Kim NK, Feigon J (2011) Architecture of human telomerase RNA. Proc Natl Acad Sci USA 108(51):20325–20332. https://doi.org/10.1073/pnas.1100279108

    Article  PubMed  Google Scholar 

  113. Chen JL, Blasco MA, Greider CW (2000) Secondary structure of vertebrate telomerase RNA. Cell 100(5):503–514

    Article  CAS  Google Scholar 

  114. Chen JL, Greider CW (2003) Template boundary definition in mammalian telomerase. Genes Dev 17(22):2747–2752. https://doi.org/10.1101/gad.1140303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Tzfati Y, Fulton TB, Roy J, Blackburn EH (2000) Template boundary in a yeast telomerase specified by RNA structure. Science 288(5467):863–867

    Article  CAS  Google Scholar 

  116. Box JA, Bunch JT, Zappulla DC, Glynn EF, Baumann P (2008) A flexible template boundary element in the RNA subunit of fission yeast telomerase. J Biol Chem 283(35):24224–24233. https://doi.org/10.1074/jbc.M802043200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Miller MC, Collins K (2002) Telomerase recognizes its template by using an adjacent RNA motif. Proc Natl Acad Sci USA 99(10):6585–6590. https://doi.org/10.1073/pnas.102024699

    Article  CAS  PubMed  Google Scholar 

  118. Lai CK, Miller MC, Collins K (2003) Roles for RNA in telomerase nucleotide and repeat addition processivity. Mol Cell 11(6):1673–1683

    Article  CAS  Google Scholar 

  119. Berman AJ, Akiyama BM, Stone MD, Cech TR (2011) The RNA accordion model for template positioning by telomerase RNA during telomeric DNA synthesis. Nat Struct Mol Biol 18(12):1371–1375. https://doi.org/10.1038/nsmb.2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yang W, Lee YS (2015) A DNA-hairpin model for repeat-addition processivity in telomere synthesis. Nat Struct Mol Biol 22(11):844–847. https://doi.org/10.1038/nsmb.3098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang Y, Yesselman JD, Zhang Q, Kang M, Feigon J (2016) Structural conservation in the template/pseudoknot domain of vertebrate telomerase RNA from teleost fish to human. Proc Natl Acad Sci USA 113(35):E5125–E5134. https://doi.org/10.1073/pnas.1607411113

    Article  CAS  PubMed  Google Scholar 

  122. Chan H, Wang Y, Feigon J (2017) Progress in human and tetrahymena telomerase structure determination. Annu Rev Biophys 46:199–225. https://doi.org/10.1146/annurev-biophys-062215-011140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bley CJ, Qi X, Rand DP, Borges CR, Nelson RW, Chen JJ (2011) RNA-protein binding interface in the telomerase ribonucleoprotein. Proc Natl Acad Sci USA 108(51):20333–20338. https://doi.org/10.1073/pnas.1100270108

    Article  PubMed  Google Scholar 

  124. Huang J, Brown AF, Wu J, Xue J, Bley CJ, Rand DP, Wu L, Zhang R, Chen JJ, Lei M (2014) Structural basis for protein-RNA recognition in telomerase. Nat Struct Mol Biol 21(6):507–512. https://doi.org/10.1038/nsmb.2819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kim NK, Zhang Q, Feigon J (2014) Structure and sequence elements of the CR4/5 domain of medaka telomerase RNA important for telomerase function. Nucleic Acids Res 42(5):3395–3408. https://doi.org/10.1093/nar/gkt1276

    Article  CAS  PubMed  Google Scholar 

  126. Leeper T, Leulliot N, Varani G (2003) The solution structure of an essential stem-loop of human telomerase RNA. Nucleic Acids Res 31(10):2614–2621

    Article  CAS  Google Scholar 

  127. Harkisheimer M, Mason M, Shuvaeva E, Skordalakes E (2013) A motif in the vertebrate telomerase N-terminal linker of TERT contributes to RNA binding and telomerase activity and processivity. Structure 21(10):1870–1878. https://doi.org/10.1016/j.str.2013.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Rouda S, Skordalakes E (2007) Structure of the RNA-binding domain of telomerase: implications for RNA recognition and binding. Structure 15(11):1403–1412. https://doi.org/10.1016/j.str.2007.09.007

    Article  CAS  PubMed  Google Scholar 

  129. Gillis AJ, Schuller AP, Skordalakes E (2008) Structure of the Tribolium castaneum telomerase catalytic subunit TERT. Nature 455(7213):633–637. https://doi.org/10.1038/nature07283

    Article  CAS  PubMed  Google Scholar 

  130. Mitchell M, Gillis A, Futahashi M, Fujiwara H, Skordalakes E (2010) Structural basis for telomerase catalytic subunit TERT binding to RNA template and telomeric DNA. Nat Struct Mol Biol 17(4):513–518. https://doi.org/10.1038/nsmb.1777

    Article  CAS  PubMed  Google Scholar 

  131. Jansson LI, Akiyama BM, Ooms A, Lu C, Rubin SM, Stone MD (2015) Structural basis of template-boundary definition in Tetrahymena telomerase. Nat Struct Mol Biol 22(11):883–888. https://doi.org/10.1038/nsmb.3101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Egan ED, Collins K (2012) Biogenesis of telomerase ribonucleoproteins. RNA 18(10):1747–1759. https://doi.org/10.1261/rna.034629.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Mitchell JR, Wood E, Collins K (1999) A telomerase component is defective in the human disease dyskeratosis congenita. Nature 402(6761):551–555. https://doi.org/10.1038/990141

    Article  CAS  PubMed  Google Scholar 

  134. Kiss T, Fayet-Lebaron E, Jady BE (2010) Box H/ACA small ribonucleoproteins. Mol Cell 37(5):597–606. https://doi.org/10.1016/j.molcel.2010.01.032

    Article  PubMed  Google Scholar 

  135. Venteicher AS, Abreu EB, Meng Z, McCann KE, Terns RM, Veenstra TD, Terns MP, Artandi SE (2009) A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis. Science 323(5914):644–648. https://doi.org/10.1126/science.1165357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Tycowski KT, Shu MD, Kukoyi A, Steitz JA (2009) A conserved WD40 protein binds the Cajal body localization signal of scaRNP particles. Mol Cell 34(1):47–57. https://doi.org/10.1016/j.molcel.2009.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Venteicher AS, Artandi SE (2009) TCAB1: driving telomerase to Cajal bodies. Cell Cycle 8(9):1329–1331. https://doi.org/10.4161/cc.8.9.8288

    Article  CAS  PubMed  Google Scholar 

  138. Chen L, Roake CM, Freund A, Batista PJ, Tian S, Yin YA, Gajera CR, Lin S, Lee B, Pech MF, Venteicher AS, Das R, Chang HY, Artandi SE (2018) An activity switch in human telomerase based on RNA conformation and shaped by TCAB1. Cell. https://doi.org/10.1016/j.cell.2018.04.039

    Article  PubMed  PubMed Central  Google Scholar 

  139. Li L, Ye K (2006) Crystal structure of an H/ACA box ribonucleoprotein particle. Nature 443(7109):302–307. https://doi.org/10.1038/nature05151

    Article  CAS  PubMed  Google Scholar 

  140. Li S, Duan J, Li D, Yang B, Dong M, Ye K (2011) Reconstitution and structural analysis of the yeast box H/ACA RNA-guided pseudouridine synthase. Genes Dev 25(22):2409–2421. https://doi.org/10.1101/gad.175299.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Nguyen THD, Tam J, Wu RA, Greber BJ, Toso D, Nogales E, Collins K (2018) Cryo-EM structure of substrate-bound human telomerase holoenzyme. Nature 557(7704):190–195. https://doi.org/10.1038/s41586-018-0062-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Podlevsky JD, Chen JJ (2012) It all comes together at the ends: telomerase structure, function, and biogenesis. Mutat Res 730(1–2):3–11. https://doi.org/10.1016/j.mrfmmm.2011.11.002

    Article  CAS  PubMed  Google Scholar 

  143. Jacobs SA, Podell ER, Cech TR (2006) Crystal structure of the essential N-terminal domain of telomerase reverse transcriptase. Nat Struct Mol Biol 13(3):218–225. https://doi.org/10.1038/nsmb1054

    Article  CAS  PubMed  Google Scholar 

  144. Petrova OA, Mantsyzov AB, Rodina EV, Efimov SV, Hackenberg C, Hakanpaa J, Klochkov VV, Lebedev AA, Chugunova AA, Malyavko AN, Zatsepin TS, Mishin AV, Zvereva MI, Lamzin VS, Dontsova OA, Polshakov VI (2017) Structure and function of the N-terminal domain of the yeast telomerase reverse transcriptase. Nucleic Acids Res. https://doi.org/10.1093/nar/gkx1275

    Article  PubMed Central  Google Scholar 

  145. Armbruster BN, Banik SS, Guo C, Smith AC, Counter CM (2001) N-terminal domains of the human telomerase catalytic subunit required for enzyme activity in vivo. Mol Cell Biol 21(22):7775–7786. https://doi.org/10.1128/MCB.21.22.7775-7786.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Armbruster BN, Linardic CM, Veldman T, Bansal NP, Downie DL, Counter CM (2004) Rescue of an hTERT mutant defective in telomere elongation by fusion with hPot1. Mol Cell Biol 24(8):3552–3561

    Article  CAS  Google Scholar 

  147. Zaug AJ, Podell ER, Nandakumar J, Cech TR (2010) Functional interaction between telomere protein TPP1 and telomerase. Genes Dev 24(6):613–622. https://doi.org/10.1101/gad.1881810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sexton AN, Regalado SG, Lai CS, Cost GJ, O’Neil CM, Urnov FD, Gregory PD, Jaenisch R, Collins K, Hockemeyer D (2014) Genetic and molecular identification of three human TPP1 functions in telomerase action: recruitment, activation, and homeostasis set point regulation. Genes Dev 28(17):1885–1899. https://doi.org/10.1101/gad.246819.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Miyoshi T, Kanoh J, Saito M, Ishikawa F (2008) Fission yeast Pot1-Tpp1 protects telomeres and regulates telomere length. Science 320(5881):1341–1344. https://doi.org/10.1126/science.1154819

    Article  CAS  PubMed  Google Scholar 

  150. Wu RA, Collins K (2014) Human telomerase specialization for repeat synthesis by unique handling of primer-template duplex. EMBO J 33(8):921–935. https://doi.org/10.1002/embj.201387205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lue NF (2005) A physical and functional constituent of telomerase anchor site. J Biol Chem 280(28):26586–26591. https://doi.org/10.1074/jbc.M503028200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zaug AJ, Podell ER, Cech TR (2008) Mutation in TERT separates processivity from anchor-site function. Nat Struct Mol Biol 15(8):870–872. https://doi.org/10.1038/nsmb.1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hoffman H, Rice C, Skordalakes E (2017) Structural analysis reveals the deleterious effects of telomerase mutations in bone marrow failure syndromes. J Biol Chem 292(11):4593–4601. https://doi.org/10.1074/jbc.M116.771204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Bryan C, Rice C, Hoffman H, Harkisheimer M, Sweeney M, Skordalakes E (2015) structural basis of telomerase inhibition by the highly specific BIBR1532. Structure 23(10):1934–1942. https://doi.org/10.1016/j.str.2015.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Banik SS, Guo C, Smith AC, Margolis SS, Richardson DA, Tirado CA, Counter CM (2002) C-terminal regions of the human telomerase catalytic subunit essential for in vivo enzyme activity. Mol Cell Biol 22(17):6234–6246

    Article  CAS  Google Scholar 

  156. Lue NF, Lin YC, Mian IS (2003) A conserved telomerase motif within the catalytic domain of telomerase reverse transcriptase is specifically required for repeat addition processivity. Mol Cell Biol 23(23):8440–8449

    Article  CAS  Google Scholar 

  157. Chu TW, D’Souza Y, Autexier C (2016) The insertion in fingers domain in human telomerase can mediate enzyme processivity and telomerase recruitment to telomeres in a TPP1-dependent manner. Mol Cell Biol 36(1):210–222. https://doi.org/10.1128/MCB.00746-15

    Article  CAS  PubMed  Google Scholar 

  158. Chu TW, MacNeil DE, Autexier C (2016) Multiple mechanisms contribute to the cell growth defects imparted by human telomerase insertion in fingers domain mutations associated with premature aging diseases. J Biol Chem 291(16):8374–8386. https://doi.org/10.1074/jbc.M116.714782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Sauerwald A, Sandin S, Cristofari G, Scheres SH, Lingner J, Rhodes D (2013) Structure of active dimeric human telomerase. Nat Struct Mol Biol 20(4):454–460. https://doi.org/10.1038/nsmb.2530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Jiang J, Chan H, Cash DD, Miracco EJ, Ogorzalek Loo RR, Upton HE, Cascio D, O’Brien Johnson R, Collins K, Loo JA, Zhou ZH, Feigon J (2015) Structure of tetrahymena telomerase reveals previously unknown subunits, functions, and interactions. Science 350(6260):aab4070. https://doi.org/10.1126/science.aab4070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Jiang J, Miracco EJ, Hong K, Eckert B, Chan H, Cash DD, Min B, Zhou ZH, Collins K, Feigon J (2013) The architecture of Tetrahymena telomerase holoenzyme. Nature 496(7444):187–192. https://doi.org/10.1038/nature12062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Alves D, Li H, Codrington R, Orte A, Ren X, Klenerman D, Balasubramanian S (2008) Single-molecule analysis of human telomerase monomer. Nat Chem Biol 4(5):287–289. https://doi.org/10.1038/nchembio.82

    Article  CAS  PubMed  Google Scholar 

  163. Egan ED, Collins K (2010) Specificity and stoichiometry of subunit interactions in the human telomerase holoenzyme assembled in vivo. Mol Cell Biol 30(11):2775–2786. https://doi.org/10.1128/MCB.00151-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wenz C, Enenkel B, Amacker M, Kelleher C, Damm K, Lingner J (2001) Human telomerase contains two cooperating telomerase RNA molecules. EMBO J 20(13):3526–3534. https://doi.org/10.1093/emboj/20.13.3526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Jiang J, Wang Y, Susac L, Chan H, Basu R, Zhou ZH, Feigon J (2018) Structure of telomerase with telomeric DNA. Cell 173(5):1179–1190. https://doi.org/10.1016/j.cell.2018.04.038(e1113)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the entire telomere and telomerase biology community for the groundbreaking research conducted over three decades that has led to our current understanding of chromosome end protection and replication. Although we strived to discuss and cite all publications that are relevant to this topic, we sincerely apologize if we may have overlooked any important contributions. We thank the entire Nandakumar laboratory for critical feedback and proofreading of the manuscript. Author salary/stipend and research in the lab during the writing of this review were funded by R01GM120094 (to J.N.), R01AG050509 (to J.N.; co-investigator), NIH Biology of Aging Training Grant (T32AG000114) awarded to the University of Michigan Geriatrics Center from the National Institute on Aging (fellowship to E.M.S.), and the American Cancer Society Research Scholar grant RSG-17-037-01-DMC (to J.N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayakrishnan Nandakumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, E.M., Pendlebury, D.F. & Nandakumar, J. Structural biology of telomeres and telomerase. Cell. Mol. Life Sci. 77, 61–79 (2020). https://doi.org/10.1007/s00018-019-03369-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03369-x

Keywords

Navigation