Skip to main content

Advertisement

Log in

Cellular mechanisms and signals that coordinate plasma membrane repair

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Plasma membrane forms the barrier between the cytoplasm and the environment. Cells constantly and selectively transport molecules across their plasma membrane without disrupting it. Any disruption in the plasma membrane compromises its selective permeability and is lethal, if not rapidly repaired. There is a growing understanding of the organelles, proteins, lipids, and small molecules that help cells signal and efficiently coordinate plasma membrane repair. This review aims to summarize how these subcellular responses are coordinated and how cellular signals generated due to plasma membrane injury interact with each other to spatially and temporally coordinate repair. With the involvement of calcium and redox signaling in single cell and tissue repair, we will discuss how these and other related signals extend from single cell repair to tissue level repair. These signals link repair processes that are activated immediately after plasma membrane injury with longer term processes regulating repair and regeneration of the damaged tissue. We propose that investigating cell and tissue repair as part of a continuum of wound repair mechanisms would be of value in treating degenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lombard J (2014) Once upon a time the cell membranes: 175 years of cell boundary research. Biol Direct 9(1):32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Harvey EN (1931) The tension at the surface of marine eggs, especially those of the sea urchin, Arbacia. Biol Bull 61(3):273–279

    Article  Google Scholar 

  3. McNeil PL, Steinhardt RA (2003) Plasma membrane disruption: repair, prevention, adaptation. Annu Rev Cell Dev Biol 19(1):697–731

    Article  CAS  PubMed  Google Scholar 

  4. Cooper ST, McNeil PL (2015) Membrane repair: mechanisms and pathophysiology. Physiol Rev 95(4):1205–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Blazek AD, Paleo BJ, Weisleder N (2015) Plasma membrane repair: a central process for maintaining cellular homeostasis. Physiology 30(6):438–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Andrews N, Perez F (2015) The plasma membrane repair shop: fixing the damage. In: Andrews N, Perez F, Boizet-Bonhoure B (eds) Seminars in cell & developmental biology, vol 45. Elsevier, p 1

  7. Heilbrunn L (1930) The surface precipitation reaction of living cells. Proc Am Philos Soc 69(1):295–301

    CAS  Google Scholar 

  8. Bouter A, Gounou C, Bérat R, Tan S, Gallois B, Granier T, d’Estaintot BL, Pöschl E, Brachvogel B, Brisson AR (2011) Annexin-A5 assembled into two-dimensional arrays promotes cell membrane repair. Nat Commun 2:270

    Article  CAS  PubMed  Google Scholar 

  9. Sharma N, Medikayala S, Defour A, Rayavarapu S, Brown KJ, Hathout Y, Jaiswal JK (2012) Use of quantitative membrane proteomics identifies a novel role of mitochondria in healing injured muscles. J Biol Chem 287(36):30455–30467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Eddleman CS, Bittner GD, Fishman HM (2000) Barrier permeability at cut axonal ends progressively decreases until an ionic seal is formed. Biophys J 79(4):1883–1890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Demonbreun AR, Quattrocelli M, Barefield DY, Allen MV, Swanson KE, McNally EM (2016) An actin-dependent annexin complex mediates plasma membrane repair in muscle. J Cell Biol 213(6):705–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bouter A, Carmeille R, Gounou C, Bouvet F, Degrelle S, Evain-Brion D, Brisson A (2015) Annexin-A5 and cell membrane repair. Placenta 36:S43–S49

    Article  CAS  PubMed  Google Scholar 

  13. Papadimitriou J, Robertson T, Mitchell C, Grounds M (1990) The process of new plasmalemma formation in focally injured skeletal muscle fibers. J Struct Biol 103(2):124–134

    Article  CAS  PubMed  Google Scholar 

  14. Miyake K, McNeil PL, Suzuki K, Tsunoda R, Sugai N (2001) An actin barrier to resealing. J Cell Sci 114(19):3487–3494

    CAS  PubMed  Google Scholar 

  15. McNeil PL (2002) Repairing a torn cell surface: make way, lysosomes to the rescue. J Cell Sci 115(5):873–879

    CAS  PubMed  Google Scholar 

  16. Jaiswal JK, Lauritzen SP, Scheffer L, Sakaguchi M, Bunkenborg J, Simon SM, Kallunki T, Jäättelä M, Nylandsted J (2014) S100A11 is required for efficient plasma membrane repair and survival of invasive cancer cells. Nat Commun 5:3795

    Article  CAS  PubMed  Google Scholar 

  17. Togo T, Krasieva TB, Steinhardt RA (2000) A decrease in membrane tension precedes successful cell-membrane repair. Mol Biol Cell 11(12):4339–4346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McDade JR, Archambeau A, Michele DE (2014) Rapid actin-cytoskeleton-dependent recruitment of plasma membrane-derived dysferlin at wounds is critical for muscle membrane repair. FASEB J 28(8):3660–3670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Horn A, Van der Meulen JH, Defour A, Hogarth M, Sreetama SC, Reed A, Scheffer L, Chandel NS, Jaiswal JK (2017) Mitochondrial redox signaling enables repair of injured skeletal muscle cells. Sci Signal. https://doi.org/10.1126/scisignal.aaj1978

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bement WM, von Dassow G (2014) Single cell pattern formation and transient cytoskeletal arrays. Curr Opin Cell Biol 26:51–59

    Article  CAS  PubMed  Google Scholar 

  21. Clark AG, Miller AL, Vaughan E, Hoi-Ying EY, Penkert R, Bement WM (2009) Integration of single and multicellular wound responses. Curr Biol 19(16):1389–1395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chambers R Jr (1917) Microdissection studies: I. The visible structure of cell protoplasm and death changes. Am J Physiol Leg Content 43(1):1–12

    Article  CAS  Google Scholar 

  23. Terasaki M, Miyake K, McNeil PL (1997) Large plasma membrane disruptions are rapidly resealed by Ca2+-dependent vesicle–vesicle fusion events. J Cell Biol 139(1):63–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Steinhardt RA, Bi G, Alderton JM (1994) Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science 263(5145):390–393

    Article  CAS  PubMed  Google Scholar 

  25. Bi G-Q, Alderton JM, Steinhardt RA (1995) Calcium-regulated exocytosis is required for cell membrane resealing. J Cell Biol 131(6):1747–1758

    Article  CAS  PubMed  Google Scholar 

  26. McNeil PL, Kirchhausen T (2005) An emergency response team for membrane repair. Nat Rev Mol Cell Biol 6(6):499

    Article  CAS  PubMed  Google Scholar 

  27. Davenport NR, Sonnemann KJ, Eliceiri KW, Bement WM (2016) Membrane dynamics during cellular wound repair. Mol Biol Cell 27(14):2272–2285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jaiswal JK, Andrews NW, Simon SM (2002) Membrane proximal lysosomes are the major vesicles responsible for calcium-dependent exocytosis in nonsecretory cells. J Cell Biol 159(4):625–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rodríguez A, Webster P, Ortego J, Andrews NW (1997) Lysosomes behave as Ca2+-regulated exocytic vesicles in fibroblasts and epithelial cells. J Cell Biol 137(1):93–104

    Article  PubMed  PubMed Central  Google Scholar 

  30. Reddy A, Caler EV, Andrews NW (2001) Plasma membrane repair is mediated by Ca2+-regulated exocytosis of lysosomes. Cell 106(2):157–169

    Article  CAS  PubMed  Google Scholar 

  31. Idone V, Tam C, Goss JW, Toomre D, Pypaert M, Andrews NW (2008) Repair of injured plasma membrane by rapid Ca2+-dependent endocytosis. J Cell Biol 180(5):905–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Defour A, Van der Meulen JH, Bhat R, Bigot A, Bashir R, Nagaraju K, Jaiswal JK (2014) Dysferlin regulates cell membrane repair by facilitating injury-triggered acid sphingomyelinase secretion. Cell Death Dis 5(6):e1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tam C, Idone V, Devlin C, Fernandes MC, Flannery A, He X, Schuchman E, Tabas I, Andrews NW (2010) Exocytosis of acid sphingomyelinase by wounded cells promotes endocytosis and plasma membrane repair. J Cell Biol 189(6):1027–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Keefe D, Shi L, Feske S, Massol R, Navarro F, Kirchhausen T, Lieberman J (2005) Perforin triggers a plasma membrane-repair response that facilitates CTL induction of apoptosis. Immunity 23(3):249–262

    Article  CAS  PubMed  Google Scholar 

  35. Thiery J, Keefe D, Saffarian S, Martinvalet D, Walch M, Boucrot E, Kirchhausen T, Lieberman J (2010) Perforin activates clathrin- and dynamin-dependent endocytosis, which is required for plasma membrane repair and delivery of granzyme B for granzyme-mediated apoptosis. Blood 115(8):1582–1593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Keyel PA, Loultcheva L, Roth R, Salter RD, Watkins SC, Yokoyama WM, Heuser JE (2011) Streptolysin O clearance through sequestration into blebs that bud passively from the plasma membrane. J Cell Sci 124(14):2414–2423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Romero M, Keyel M, Shi G, Bhattacharjee P, Roth R, Heuser JE, Keyel PA (2017) Intrinsic repair protects cells from pore-forming toxins by microvesicle shedding. Cell Death Differ 24(5):798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jimenez AJ, Maiuri P, Lafaurie-Janvore J, Divoux S, Piel M, Perez F (2014) ESCRT machinery is required for plasma membrane repair. Science 343(6174):1247136

    Article  CAS  PubMed  Google Scholar 

  39. Scheffer LL, Sreetama SC, Sharma N, Medikayala S, Brown KJ, Defour A, Jaiswal JK (2014) Mechanism of Ca2+-triggered ESCRT assembly and regulation of cell membrane repair. Nat Commun 5:5646

    Article  CAS  PubMed  Google Scholar 

  40. Jaiswal J (2001) Calcium—how and why? J Biosci 26(3):357–363

    Article  CAS  PubMed  Google Scholar 

  41. Schanne F, Kane AB, Young EE, Farber JL (1979) Calcium dependence of toxic cell death: a final common pathway. Science 206(4419):700–702

    Article  CAS  PubMed  Google Scholar 

  42. Heilbrunn L (1923) The colloid chemistry of protoplasm: I. General considerations II. The electrical charges of protoplasm. Am J Physiol Leg Content 64(3):481–498

    Article  CAS  Google Scholar 

  43. De Mello W (1973) Membrane sealing in frog skeletal-muscle fibers. Proc Natl Acad Sci 70(4):982–984

    Article  PubMed  PubMed Central  Google Scholar 

  44. Potez S, Luginbühl M, Monastyrskaya K, Hostettler A, Draeger A, Babiychuk EB (2011) Tailored protection against plasmalemmal injury by annexins with different Ca2+ sensitivities. J Biol Chem 286(20):17982–17991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Boucher E, Mandato CA (2015) Plasma membrane and cytoskeleton dynamics during single-cell wound healing. Biochim Biophys Acta Mol Cell Res 1853 10:2649–2661

    Article  CAS  Google Scholar 

  46. Babiychuk E, Monastyrskaya K, Potez S, Draeger A (2009) Intracellular Ca2+ operates a switch between repair and lysis of streptolysin O-perforated cells. Cell Death Differ 16(8):1126

    Article  CAS  PubMed  Google Scholar 

  47. Scolding N, Morgan B, Campbell A, Compston D (1992) The role of calcium in rat oligodendrocyte injury and repair. Neurosci Lett 135(1):95–98

    Article  CAS  PubMed  Google Scholar 

  48. Gerke V, Moss SE (2002) Annexins: from structure to function. Physiol Rev 82(2):331–371

    Article  CAS  PubMed  Google Scholar 

  49. Boye TL, Nylandsted J (2016) Annexins in plasma membrane repair. Biol Chem 397(10):961–969

    Article  CAS  PubMed  Google Scholar 

  50. Draeger A, Schoenauer R, Atanassoff AP, Wolfmeier H, Babiychuk EB (2014) Dealing with damage: plasma membrane repair mechanisms. Biochimie 107:66–72

    Article  CAS  PubMed  Google Scholar 

  51. Roostalu U, Strähle U (2012) In vivo imaging of molecular interactions at damaged sarcolemma. Dev Cell 22(3):515–529

    Article  CAS  PubMed  Google Scholar 

  52. Boye TL, Maeda K, Pezeshkian W, Sønder SL, Haeger SC, Gerke V, Simonsen AC, Nylandsted J (2017) Annexin A4 and A6 induce membrane curvature and constriction during cell membrane repair. Nat Commun 8(1):1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Leikina E, Defour A, Melikov K, Van der Meulen JH, Nagaraju K, Bhuvanendran S, Gebert C, Pfeifer K, Chernomordik LV, Jaiswal JK (2015) Annexin A1 deficiency does not affect myofiber repair but delays regeneration of injured muscles. Sci Rep 5:18246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McNeil AK, Rescher U, Gerke V, McNeil PL (2006) Requirement for annexin A1 in plasma membrane repair. J Biol Chem 281(46):35202–35207

    Article  CAS  PubMed  Google Scholar 

  55. Koerdt SN, Gerke V (2017) Annexin A2 is involved in Ca2+-dependent plasma membrane repair in primary human endothelial cells. Biochim Biophys Acta Mol Cell Res 1864 6:1046–1053

    Article  CAS  Google Scholar 

  56. Mellgren RL, Zhang W, Miyake K, McNeil PL (2007) Calpain is required for the rapid, calcium-dependent repair of wounded plasma membrane. J Biol Chem 282(4):2567–2575

    Article  CAS  PubMed  Google Scholar 

  57. Xie X, Barrett JN (1991) Membrane resealing in cultured rat septal neurons after neurite transection: evidence for enhancement by Ca(2+)-triggered protease activity and cytoskeletal disassembly. J Neurosci 11(10):3257–3267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Howard M, David G, Barrett J (1999) Resealing of transected myelinated mammalian axons in vivo: evidence for involvement of calpain. Neuroscience 93(2):807–815

    Article  CAS  PubMed  Google Scholar 

  59. Gitler D, Spira ME (1998) Real time imaging of calcium-induced localized proteolytic activity after axotomy and its relation to growth cone formation. Neuron 20(6):1123–1135

    Article  CAS  PubMed  Google Scholar 

  60. Redpath G, Woolger N, Piper A, Lemckert F, Lek A, Greer P, North K, Cooper S (2014) Calpain cleavage within dysferlin exon 40a releases a synaptotagmin-like module for membrane repair. Mol Biol Cell 25(19):3037–3048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hendricks BK, Shi R (2014) Mechanisms of neuronal membrane sealing following mechanical trauma. Neurosci Bull 30(4):627–644

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kamber D, Erez H, Spira ME (2009) Local calcium-dependent mechanisms determine whether a cut axonal end assembles a retarded endbulb or competent growth cone. Exp Neurol 219(1):112–125

    Article  CAS  PubMed  Google Scholar 

  63. Evans JS, Turner MD (2007) Emerging functions of the calpain superfamily of cysteine proteases in neuroendocrine secretory pathways. J Neurochem 103(3):849–859

    Article  CAS  PubMed  Google Scholar 

  64. Liu X, Van Vleet T, Schnellmann RG (2004) The role of calpain in oncotic cell death. Annu Rev Pharmacol Toxicol 44:349–370

    Article  CAS  PubMed  Google Scholar 

  65. Padamsey Z, McGuinness L, Emptage NJ (2017) Inhibition of lysosomal Ca2+ signalling disrupts dendritic spine structure and impairs wound healing in neurons. Commun Integr Biol 10(5–6):e1344802

    Article  PubMed  PubMed Central  Google Scholar 

  66. Cheng X, Zhang X, Gao Q, Samie MA, Azar M, Tsang WL, Dong L, Sahoo N, Li X, Zhuo Y (2014) The intracellular Ca2+ channel MCOLN1 is required for sarcolemma repair to prevent muscular dystrophy. Nat Med 20(10):1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li X, Rydzewski N, Hider A, Zhang X, Yang J, Wang W, Gao Q, Cheng X, Xu H (2016) A molecular mechanism to regulate lysosome motility for lysosome positioning and tubulation. Nat Cell Biol 18(4):404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schöneberg J, Lee I-H, Iwasa JH, Hurley JH (2017) Reverse-topology membrane scission by the ESCRT proteins. Nat Rev Mol Cell Biol 18(1):5

    Article  CAS  PubMed  Google Scholar 

  69. Südhof TC (2002) Synaptotagmins: why so many? J Biol Chem 277(10):7629–7632

    Article  CAS  PubMed  Google Scholar 

  70. Detrait E, Yoo S, Eddleman C, Fukuda M, Bittner G, Fishman H (2000) Plasmalemmal repair of severed neurites of PC12 cells requires Ca2+ and synaptotagmin. J Neurosci Res 62(4):566–573

    Article  CAS  PubMed  Google Scholar 

  71. Yoo S, Nguyen MP, Fukuda M, Bittner GD, Fishman HM (2003) Plasmalemmal sealing of transected mammalian neurites is a gradual process mediated by Ca2+-regulated proteins. J Neurosci Res 74(4):541–551

    Article  CAS  PubMed  Google Scholar 

  72. Martinez I, Chakrabarti S, Hellevik T, Morehead J, Fowler K, Andrews NW (2000) Synaptotagmin VII regulates Ca2+-dependent exocytosis of lysosomes in fibroblasts. J Cell Biol 148(6):1141–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Caler EV, Chakrabarti S, Fowler KT, Rao S, Andrews NW (2001) The exocytosis-regulatory protein synaptotagmin VII mediates cell invasion by Trypanosoma cruzi. J Exp Med 193(9):1097–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jaiswal JK, Chakrabarti S, Andrews NW, Simon SM (2004) Synaptotagmin VII restricts fusion pore expansion during lysosomal exocytosis. PLoS Biol 2(8):e233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sreetama S, Takano T, Nedergaard M, Simon S, Jaiswal J (2016) Injured astrocytes are repaired by Synaptotagmin XI-regulated lysosome exocytosis. Cell Death Differ 23(4):596

    Article  CAS  PubMed  Google Scholar 

  76. Baram D, Adachi R, Medalia O, Tuvim M, Dickey BF, Mekori YA, Sagi-Eisenberg R (1999) Synaptotagmin II negatively regulates Ca2+-triggered exocytosis of lysosomes in mast cells. J Exp Med 189(10):1649–1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Encarnação M, Espada L, Escrevente C, Mateus D, Ramalho J, Michelet X, Santarino I, Hsu VW, Brenner MB, Barral DC (2016) A Rab3a-dependent complex essential for lysosome positioning and plasma membrane repair. J Cell Biol 213(6):631–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lek A, Evesson FJ, Lemckert FA, Redpath GM, Lueders A-K, Turnbull L, Whitchurch CB, North KN, Cooper ST (2013) Calpains, cleaved mini-dysferlinC72, and L-type channels underpin calcium-dependent muscle membrane repair. J Neurosci 33(12):5085–5094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bansal D, Miyake K, Vogel SS, Groh S, Chen C-C, Williamson R, McNeil PL, Campbell KP (2003) Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature 423(6936):168

    Article  CAS  PubMed  Google Scholar 

  80. Han W-Q, Xia M, Xu M, Boini KM, Ritter JK, Li N-J, Li P-L (2012) Lysosome fusion to the cell membrane is mediated by the dysferlin C2A domain in coronary arterial endothelial cells. J Cell Sci 125(5):1225–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Corrotte M, Almeida PE, Tam C, Castro-Gomes T, Fernandes MC, Millis BA, Cortez M, Miller H, Song W, Maugel TK (2013) Caveolae internalization repairs wounded cells and muscle fibers. Elife 2:e00926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Clapham DE (2007) Calcium signaling. Cell 131(6):1047–1058

    Article  CAS  PubMed  Google Scholar 

  83. Benink HA, Bement WM (2005) Concentric zones of active RhoA and Cdc42 around single cell wounds. J Cell Biol 168(3):429–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bement WM, Hoi-Ying EY, Burkel BM, Vaughan EM, Clark AG (2007) Rehabilitation and the single cell. Curr Opin Cell Biol 19(1):95–100

    Article  CAS  PubMed  Google Scholar 

  85. Mandato CA, Bement WM (2001) Contraction and polymerization cooperate to assemble and close actomyosin rings around Xenopus oocyte wounds. J Cell Biol 154(4):785–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Vaughan EM, You J-S, Yu H-YE, Lasek A, Vitale N, Hornberger TA, Bement WM (2014) Lipid domain-dependent regulation of single-cell wound repair. Mol Biol Cell 25(12):1867–1876

    Article  PubMed  PubMed Central  Google Scholar 

  87. Holmes WR, Liao L, Bement W, Edelstein-Keshet L (2015) Modeling the roles of protein kinase Cβ and η in single-cell wound repair. Mol Biol Cell 26(22):4100–4108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Floyd CL, Rzigalinski BA, Weber JT, Sitterding HA, Willoughby KA, Ellis EF (2001) Traumatic injury of cultured astrocytes alters inositol (1, 4, 5)-trisphosphate-mediated signaling. Glia 33(1):12–23

    Article  CAS  PubMed  Google Scholar 

  89. Arun SN, Xie D, Howard AC, Zhong Q, Zhong X, McNeil PL, Bollag WB (2013) Cell wounding activates phospholipase D in primary mouse keratinocytes. J Lipid Res 54(3):581–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bader M-F, Vitale N (2009) Phospholipase D in calcium-regulated exocytosis: lessons from chromaffin cells. Biochim Biophys Acta Mol Cell Biol Lipids 1791(9):936–941

    Article  CAS  Google Scholar 

  91. Frohman MA, Sung T-C, Morris AJ (1999) Mammalian phospholipase D structure and regulation. Biochim Biophys Acta Mol Cell Biol Lipids 1439(2):175–186

    Article  CAS  Google Scholar 

  92. Zuzek A, Fan JD, Spaeth CS, Bittner GD (2013) Sealing of transected neurites of rat B104 cells requires a diacylglycerol PKC-dependent pathway and a PKA-dependent pathway. Cell Mol Neurobiol 33(1):31–46

    Article  CAS  PubMed  Google Scholar 

  93. Togo T (2017) Cell membrane disruption stimulates cAMP and Ca2+ signaling to potentiate cell membrane resealing in neighboring cells. Biol Open 6(12):1814–1819

    Article  PubMed  PubMed Central  Google Scholar 

  94. Spaeth CS, Boydston EA, Figard LR, Zuzek A, Bittner GD (2010) A model for sealing plasmalemmal damage in neurons and other eukaryotic cells. J Neurosci 30(47):15790–15800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Togo T (2006) Disruption of the plasma membrane stimulates rearrangement of microtubules and lipid traffic toward the wound site. J Cell Sci 119(13):2780–2786

    Article  CAS  PubMed  Google Scholar 

  96. Togo T (2004) Long-term potentiation of wound-induced exocytosis and plasma membrane repair is dependant on cAMP-response element-mediated transcription via a protein kinase C- and p38 MAPK-dependent pathway. J Biol Chem 279(43):44996–45003

    Article  CAS  PubMed  Google Scholar 

  97. Togo T (2012) Cell membrane disruption stimulates NO/PKG signaling and potentiates cell membrane repair in neighboring cells. PLoS One 7(8):e42885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Covian-Nares JF, Koushik SV, Puhl HL, Vogel SS (2010) Membrane wounding triggers ATP release and dysferlin-mediated intercellular calcium signaling. J Cell Sci 123(11):1884–1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ahmed SM, Rzigalinski BA, Willoughby KA, Sitterding HA, Ellis EF (2000) Stretch-induced injury alters mitochondrial membrane potential and cellular ATP in cultured astrocytes and neurons. J Neurochem 74(5):1951–1960

    Article  CAS  PubMed  Google Scholar 

  100. Sivaramakrishnan V, Bidula S, Campwala H, Katikaneni D, Fountain SJ (2012) Constitutive lysosome exocytosis releases ATP and engages P2Y receptors in human monocytes. J Cell Sci 125(19):4567–4575

    Article  CAS  PubMed  Google Scholar 

  101. Zhang Z, Chen G, Zhou W, Song A, Xu T, Luo Q, Wang W, X-s Gu, Duan S (2007) Regulated ATP release from astrocytes through lysosome exocytosis. Nat Cell Biol 9(8):945

    Article  CAS  PubMed  Google Scholar 

  102. Togo T (2014) Short-term potentiation of membrane resealing in neighboring cells is mediated by purinergic signaling. Purinergic Signal 10(2):283–290

    Article  CAS  PubMed  Google Scholar 

  103. Neary JT, Kang Y, Tran M, Feld J (2005) Traumatic injury activates protein kinase B/Akt in cultured astrocytes: role of extracellular ATP and P2 purinergic receptors. J Neurotrauma 22(4):491–500

    Article  PubMed  Google Scholar 

  104. Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, Di Malta C, Donaudy F, Embrione V, Polishchuk RS (2009) A gene network regulating lysosomal biogenesis and function. Science 325(5939):473–477

    Article  CAS  PubMed  Google Scholar 

  105. Palmieri M, Pal R, Nelvagal HR, Lotfi P, Stinnett GR, Seymour ML, Chaudhury A, Bajaj L, Bondar VV, Bremner L (2017) mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases. Nat Commun 8:14338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24(10):R453–R462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Reczek CR, Chandel NS (2015) ROS-dependent signal transduction. Curr Opin Cell Biol 33:8–13

    Article  CAS  PubMed  Google Scholar 

  108. Forman HJ, Ursini F, Maiorino M (2014) An overview of mechanisms of redox signaling. J Mol Cell Cardiol 73:2–9

    Article  CAS  PubMed  Google Scholar 

  109. Cai C, Masumiya H, Weisleder N, Matsuda N, Nishi M, Hwang M, Ko J-K, Lin P, Thornton A, Zhao X (2009) MG53 nucleates assembly of cell membrane repair machinery. Nat Cell Biol 11(1):56

    Article  PubMed  Google Scholar 

  110. Spaeth C, Fan J, Spaeth E, Robison T, Wilcott R, Bittner G (2012) Neurite transection produces cytosolic oxidation, which enhances plasmalemmal repair. J Neurosci Res 90(5):945–954

    Article  CAS  PubMed  Google Scholar 

  111. Duan X, Chan KT, Lee KK, Mak AF (2015) Oxidative stress and plasma membrane repair in single myoblasts after femtosecond laser photoporation. Ann Biomed Eng 43(11):2735–2744

    Article  PubMed  Google Scholar 

  112. Howard AC, McNeil AK, McNeil PL (2011) Promotion of plasma membrane repair by vitamin E. Nat Commun 2:597

    Article  CAS  PubMed  Google Scholar 

  113. Hwang M, J-k Ko, Weisleder N, Takeshima H, Ma J (2011) Redox-dependent oligomerization through a leucine zipper motif is essential for MG53-mediated cell membrane repair. Am J Physiol Cell Physiol 301(1):C106–C114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Gushchina LV, Bhattacharya S, McElhanon KE, Choi JH, Manring H, Beck EX, Alloush J, Weisleder N (2017) Treatment with recombinant human MG53 protein increases membrane integrity in a mouse model of limb girdle muscular dystrophy 2B. Mol Ther 25(10):2360–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Andrews NW, Corrotte M, Castro-Gomes T (2015) Above the fray: surface remodeling by secreted lysosomal enzymes leads to endocytosis-mediated plasma membrane repair. Semin Cell Dev Biol 45:10–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Brennan JP, Bardswell SC, Burgoyne JR, Fuller W, Schröder E, Wait R, Begum S, Kentish JC, Eaton P (2006) Oxidant-induced activation of type I protein kinase A is mediated by RI subunit interprotein disulfide bond formation. J Biol Chem 281(31):21827–21836

    Article  CAS  PubMed  Google Scholar 

  117. Humphries KM, Pennypacker JK, Taylor SS (2007) Redox regulation of cAMP-dependent protein kinase signaling KINASE VERSUS PHOSPHATASE INACTIVATION. J Biol Chem 282(30):22072–22079

    Article  CAS  PubMed  Google Scholar 

  118. Aghajanian A, Wittchen ES, Campbell SL, Burridge K (2009) Direct activation of RhoA by reactive oxygen species requires a redox-sensitive motif. PLoS One 4(11):e8045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Li Q-F, Spinelli AM, Tang DD (2009) Cdc42GAP, reactive oxygen species, and the vimentin network. Am J Physiol Cell Physiol 297(2):C299–C309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Labazi M, McNeil AK, Kurtz T, Lee TC, Pegg RB, Angeli JPF, Conrad M, McNeil PL (2015) The antioxidant requirement for plasma membrane repair in skeletal muscle. Free Radic Biol Med 84:246–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Angelova PR, Abramov AY (2016) Functional role of mitochondrial reactive oxygen species in physiology. Free Radic Biol Med 100:81–85

    Article  CAS  PubMed  Google Scholar 

  122. Domijan A-M, Kovac S, Abramov AY (2014) Lipid peroxidation is essential for phospholipase C activity and the inositol-trisphosphate-related Ca2+ signal. J Cell Sci 127(1):21–26

    Article  CAS  PubMed  Google Scholar 

  123. Lamb RG, Harper CC, McKinney JS, Rzigalinski BA, Ellis EF (1997) Alterations in phosphatidylcholine metabolism of stretch-injured cultured rat astrocytes. J Neurochem 68(5):1904–1910

    Article  CAS  PubMed  Google Scholar 

  124. Fisher AB, Vasquez-Medina JP, Dodia C, Sorokina EM, Tao J-Q, Feinstein SI (2018) Peroxiredoxin 6 phospholipid hydroperoxidase activity in the repair of peroxidized cell membranes. Redox Biol 14:41–46

    Article  CAS  PubMed  Google Scholar 

  125. Görlach A, Bertram K, Hudecova S, Krizanova O (2015) Calcium and ROS: a mutual interplay. Redox Biol 6:260–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gurkoff G, Shahlaie K, Lyeth B, Berman R (2013) Voltage-gated calcium channel antagonists and traumatic brain injury. Pharmaceuticals 6(7):788–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bogeski I, Kappl R, Kummerow C, Gulaboski R, Hoth M, Niemeyer BA (2011) Redox regulation of calcium ion channels: chemical and physiological aspects. Cell Calcium 50(5):407–423

    Article  CAS  PubMed  Google Scholar 

  128. Nehrt A, Rodgers R, Shapiro S, Borgens R, Shi R (2007) The critical role of voltage-dependent calcium channel in axonal repair following mechanical trauma. Neuroscience 146(4):1504–1512

    Article  CAS  PubMed  Google Scholar 

  129. Dong Z, Shanmughapriya S, Tomar D, Siddiqui N, Lynch S, Nemani N, Breves SL, Zhang X, Tripathi A, Palaniappan P (2017) Mitochondrial Ca2+ uniporter is a mitochondrial luminal redox sensor that augments MCU channel activity. Mol Cell 65(6):1014–1028 (e1017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhang X, Cheng X, Yu L, Yang J, Calvo R, Patnaik S, Hu X, Gao Q, Yang M, Lawas M (2016) MCOLN1 is a ROS sensor in lysosomes that regulates autophagy. Nat Commun 7:12109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Demers-Lamarche J, Guillebaud G, Tlili M, Todkar K, Bélanger N, Grondin M, Nguyen AP, Michel J, Germain M (2016) Loss of mitochondrial function impairs lysosomes. J Biol Chem 291(19):10263–10276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Coblentz J, Croix CS, Kiselyov K (2014) Loss of TRPML1 promotes production of reactive oxygen species: is oxidative damage a factor in mucolipidosis type IV? Biochem J 457(2):361–368

    Article  CAS  PubMed  Google Scholar 

  133. Middel V, Zhou L, Takamiya M, Beil T, Shahid M, Roostalu U, Grabher C, Rastegar S, Reischl M, Nienhaus GU (2016) Dysferlin-mediated phosphatidylserine sorting engages macrophages in sarcolemma repair. Nat Commun 7:12875

    Article  PubMed  PubMed Central  Google Scholar 

  134. Castro-Gomes T, Corrotte M, Tam C, Andrews NW (2016) Plasma membrane repair is regulated extracellularly by proteases released from lysosomes. PLoS One 11(3):e0152583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Bianco F, Perrotta C, Novellino L, Francolini M, Riganti L, Menna E, Saglietti L, Schuchman EH, Furlan R, Clementi E (2009) Acid sphingomyelinase activity triggers microparticle release from glial cells. EMBO J 28(8):1043–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Li X, Becker KA, Zhang Y (2010) Ceramide in redox signaling and cardiovascular diseases. Cell Physiol Biochem 26(1):41–48

    Article  CAS  PubMed  Google Scholar 

  137. Asaoka Y, S-i Nakamura, Yoshida K, Nishizuka Y (1992) Protein kinase C, calcium and phospholipid degradation. Trends Biochem Sci 17(10):414–417

    Article  CAS  PubMed  Google Scholar 

  138. Hoi-Ying EY, Bement WM (2007) Control of local actin assembly by membrane fusion-dependent compartment mixing. Nat Cell Biol 9(2):149

    Article  CAS  Google Scholar 

  139. Tran DT, Masedunskas A, Weigert R, Ten Hagen KG (2015) Arp2/3-mediated F-actin formation controls regulated exocytosis in vivo. Nat Commun 6:10098

    Article  CAS  PubMed  Google Scholar 

  140. Verboon JM, Parkhurst SM (2015) Rho family GTPases bring a familiar ring to cell wound repair. Small GTPases 6(1):1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Simon CM, Vaughan EM, Bement WM, Edelstein-Keshet L (2013) Pattern formation of Rho GTPases in single cell wound healing. Mol Biol Cell 24(3):421–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Abreu-Blanco MT, Verboon JM, Parkhurst SM (2014) Coordination of Rho family GTPase activities to orchestrate cytoskeleton responses during cell wound repair. Curr Biol 24(2):144–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Burkel BM, Benink HA, Vaughan EM, von Dassow G, Bement WM (2012) A Rho GTPase signal treadmill backs a contractile array. Dev Cell 23(2):384–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Duman JG, Mulherkar S, Tu Y-K, Cheng JX, Tolias KF (2015) Mechanisms for spatiotemporal regulation of Rho-GTPase signaling at synapses. Neurosci Lett 601:4–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Bement WM, Miller AL, von Dassow G (2006) Rho GTPase activity zones and transient contractile arrays. BioEssays 28(10):983–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Vaughan EM, Miller AL, Hoi-Ying EY, Bement WM (2011) Control of local Rho GTPase crosstalk by Abr. Curr Biol 21(4):270–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Nakamura M, Verboon JM, Parkhurst SM (2017) Prepatterning by RhoGEFs governs Rho GTPase spatiotemporal dynamics during wound repair. J Cell Biol 216:3959–3969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Godin LM, Vergen J, Prakash Y, Pagano RE, Hubmayr RD (2011) Spatiotemporal dynamics of actin remodeling and endomembrane trafficking in alveolar epithelial type I cell wound healing. Am J Physiol Lung Cell Mol Physiol 300(4):L615–L623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Illenberger D, Schwald F, Pimmer D, Binder W, Maier G, Dietrich A, Gierschik P (1998) Stimulation of phospholipase C-β2 by the Rho GTPases Cdc42Hs and Rac1. EMBO J 17(21):6241–6249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wales P, Schuberth CE, Aufschnaiter R, Fels J, García-Aguilar I, Janning A, Dlugos CP, Schäfer-Herte M, Klingner C, Wälte M (2016) Calcium-mediated actin reset (CaAR) mediates acute cell adaptations. Elife 5:e19850

    Article  PubMed  PubMed Central  Google Scholar 

  151. Zhou B, Yu P, Lin M-Y, Sun T, Chen Y, Sheng Z-H (2016) Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits. J Cell Biol 214:103–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Han SM, Baig HS, Hammarlund M (2016) Mitochondria localize to injured axons to support regeneration. Neuron 92(6):1308–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193):314

    Article  CAS  PubMed  Google Scholar 

  154. Cordeiro JV, Jacinto A (2013) The role of transcription-independent damage signals in the initiation of epithelial wound healing. Nat Rev Mol Cell Biol 14(4):249

    Article  CAS  PubMed  Google Scholar 

  155. Enyedi B, Niethammer P (2015) Mechanisms of epithelial wound detection. Trends Cell Biol 25(7):398–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Cong X, Hubmayr RD, Li C, Zhao X (2017) Plasma membrane wounding and repair in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 312(3):L371–L391

    Article  PubMed  PubMed Central  Google Scholar 

  157. Sonnemann KJ, Bement WM (2011) Wound repair: toward understanding and integration of single-cell and multicellular wound responses. Annu Rev Cell Dev Biol 27:237–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L (2010) Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 78(9):838–848

    Article  CAS  PubMed  Google Scholar 

  159. Than UTT, Guanzon D, Leavesley D, Parker T (2017) Association of extracellular membrane vesicles with cutaneous wound healing. Int J Mol Sci 18(5):956

    Article  PubMed Central  Google Scholar 

  160. Hurley JH (2015) ESCRTs are everywhere. EMBO J 34(19):2398–2407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19:213–228

    Article  CAS  PubMed  Google Scholar 

  162. Jaiswal JK, Nylandsted J (2015) S100 and annexin proteins identify cell membrane damage as the Achilles heel of metastatic cancer cells. Cell Cycle 14(4):502–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Dalli J, Norling LV, Renshaw D, Cooper D, Leung K-Y, Perretti M (2008) Annexin 1 mediates the rapid anti-inflammatory effects of neutrophil-derived microparticles. Blood 112(6):2512–2519

    Article  CAS  PubMed  Google Scholar 

  164. Leoni G, Neumann P-A, Kamaly N, Quiros M, Nishio H, Jones HR, Sumagin R, Hilgarth RS, Alam A, Fredman G (2015) Annexin A1—containing extracellular vesicles and polymeric nanoparticles promote epithelial wound repair. J Clin Investig 125(3):1215–1227

    Article  PubMed  PubMed Central  Google Scholar 

  165. Defour A, Medikayala S, Van der Meulen JH, Hogarth MW, Holdreith N, Malatras A, Duddy W, Boehler J, Nagaraju K, Jaiswal JK (2017) Annexin A2 links poor myofiber repair with inflammation and adipogenic replacement of the injured muscle. Hum Mol Genet 26(11):1979–1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Hervera A, De Virgiliis F, Palmisano I, Zhou L, Tantardini E, Kong G, Hutson T, Danzi MC, Perry RB-T, Santos CX (2018) Reactive oxygen species regulate axonal regeneration through the release of exosomal NADPH oxidase 2 complexes into injured axons. Nat Cell Biol 20(3):307–319

    Article  CAS  PubMed  Google Scholar 

  167. Niethammer P (2016) The early wound signals. Curr Opin Genet Dev 40:17–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Razzell W, Evans IR, Martin P, Wood W (2013) Calcium flashes orchestrate the wound inflammatory response through DUOX activation and hydrogen peroxide release. Curr Biol 23(5):424–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Shannon EK, Stevens A, Edrington W, Zhao Y, Jayasinghe AK, Page-McCaw A, Hutson MS (2017) Multiple mechanisms drive calcium signal dynamics around laser-induced epithelial wounds. Biophys J 113(7):1623–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Aihara E, Hentz CL, Korman AM, Perry NP, Prasad V, Shull GE, Montrose MH (2013) In vivo epithelial wound repair requires mobilization of endogenous intracellular and extracellular calcium. J Biol Chem 288(47):33585–33597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Restrepo S, Basler K (2016) Drosophila wing imaginal discs respond to mechanical injury via slow InsP 3 R-mediated intercellular calcium waves. Nat Commun 7:12450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Xu S, Chisholm AD (2011) A Gα q-Ca2+ signaling pathway promotes actin-mediated epidermal wound closure in C. elegans. Curr Biol 21(23):1960–1967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Khakh BS, Burnstock G (2009) The double life of ATP. Sci Am 301(6):84–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Boucher I, Rich C, Lee A, Marcincin M, Trinkaus-Randall V (2010) The P2Y2 receptor mediates the epithelial injury response and cell migration. Am J Physiol Cell Physiol 299(2):C411–C421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Sen CK, Roy S (2008) Redox signals in wound healing. Biochim Biophys Acta Gen Subj 1780(11):1348–1361

    Article  CAS  Google Scholar 

  176. Jiang F, Zhang Y, Dusting GJ (2011) NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev 63(1):218–242

    Article  CAS  PubMed  Google Scholar 

  177. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB (2014) Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20(7):1126–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Le Moal E, Pialoux V, Juban G, Groussard C, Zouhal H, Chazaud B, Mounier R (2017) Redox control of skeletal muscle regeneration. Antioxid Redox Signal 27(5):276–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Niethammer P, Grabher C, Look AT, Mitchison TJ (2009) A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459(7249):996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Love NR, Chen Y, Ishibashi S, Kritsiligkou P, Lea R, Koh Y, Gallop JL, Dorey K, Amaya E (2013) Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration. Nat Cell Biol 15(2):222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. de Oliveira S, López-Muñoz A, Candel S, Pelegrín P, Calado Â, Mulero V (2014) ATP modulates acute inflammation in vivo through dual oxidase 1-derived H2O2 production and NF-κB activation. J Immunol 192(12):5710–5719

    Article  CAS  PubMed  Google Scholar 

  182. Yoo SK, Starnes TW, Deng Q, Huttenlocher A (2011) Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature 480(7375):109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. LeBert D, Squirrell JM, Freisinger C, Rindy J, Golenberg N, Frecentese G, Gibson A, Eliceiri KW, Huttenlocher A (2018) Damage-induced reactive oxygen species regulate vimentin and dynamic collagen-based projections to mediate wound repair. Elife 7:e30703

    Article  PubMed  PubMed Central  Google Scholar 

  184. Loo AEK, Halliwell B (2012) Effects of hydrogen peroxide in a keratinocyte-fibroblast co-culture model of wound healing. Biochem Biophys Res Commun 423(2):253–258

    Article  CAS  PubMed  Google Scholar 

  185. Vezzoli M, Castellani P, Corna G, Castiglioni A, Bosurgi L, Monno A, Brunelli S, Manfredi AA, Rubartelli A, Rovere-Querini P (2011) High-mobility group box 1 release and redox regulation accompany regeneration and remodeling of skeletal muscle. Antioxid Redox Signal 15(8):2161–2174

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A. H. performed this work as part of his doctoral studies at the Institute for Biomedical Sciences at the George Washington University, and this writing constitutes part of his Ph.D. dissertation. J. K. J. and A. H. acknowledge financial support by Grants from the National Institute of Arthritis and Musculoskeletal and Skin Disease (R01AR055686), National Institute of Child Health and Human Development (U54HD090257), and Clark Charitable Foundation. We thank our lab members for useful discussions and inputs during the course of writing and editing this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti K. Jaiswal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horn, A., Jaiswal, J.K. Cellular mechanisms and signals that coordinate plasma membrane repair. Cell. Mol. Life Sci. 75, 3751–3770 (2018). https://doi.org/10.1007/s00018-018-2888-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2888-7

Keywords

Navigation