Skip to main content

Advertisement

Log in

In vivo regulation of the A disintegrin and metalloproteinase 10 (ADAM10) by the tetraspanin 15

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

A disintegrin and metalloproteinase 10 (ADAM10) plays a major role in the ectodomain shedding of important surface molecules with physiological and pathological relevance including the amyloid precursor protein (APP), the cellular prion protein, and different cadherins. Despite its therapeutic potential, there is still a considerable lack of knowledge how this protease is regulated. We have previously identified tetraspanin15 (Tspan15) as a member of the TspanC8 family to specifically associate with ADAM10. Cell-based overexpression experiments revealed that this binding affected the maturation process and surface expression of the protease. Our current study shows that Tspan15 is abundantly expressed in mouse brain, where it specifically interacts with endogenous ADAM10. Tspan15 knockout mice did not reveal an overt phenotype but showed a pronounced decrease of the active and mature form of ADAM10, an effect which augmented with aging. The decreased expression of active ADAM10 correlated with an age-dependent reduced shedding of neuronal (N)-cadherin and the cellular prion protein. APP α-secretase cleavage and the expression of Notch-dependent genes were not affected by the loss of Tspan15, which is consistent with the hypothesis that different TspanC8s cause ADAM10 to preferentially cleave particular substrates. Analyzing spine morphology revealed no obvious differences between Tspan15 knockout and wild-type mice. However, Tspan15 expression was elevated in brains of an Alzheimer’s disease mouse model and of patients, suggesting that upregulation of Tspan15 expression reflects a cellular response in a disease state. In conclusion, our data show that Tspan15 and most likely also other members of the TspanC8 family are central modulators of ADAM10-mediated ectodomain shedding in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

ADAM:

A Disintegrin And Metalloproteinase

APP:

Amyloid precursor protein

CA1:

CA1 layer of the hippocampus

CC:

Corpus callosum

CNS:

Central nervous system

cKO:

Conditional knockout

CTF:

C-terminal fragment

Cx:

Cortex

fl:

Full-length

GFAP:

Glial fibrillary acidic protein

GPI:

Glycosylphosphatidylinositol

IB:

Immunoblot

Iba1:

Ionized calcium-binding adaptor molecule 1

IP:

Immunoprecipitation

ko:

Knockout

LEL:

Large extracellular loop

LIMP-2:

Lysosomal integral membrane protein-2

NeuN:

Neuronal neuclei

PrPC :

Cellular prion protein

PrPSc :

Scrapie PrP

shPrPC :

Shed PrPC

PNGase F:

Peptide N-glycosidase F

PSD:

Postsynaptic density

SEL:

Small extracellular loop

Tspan:

Tetraspanin

TALEN:

Transcription activator-like effector nuclease

TEM:

Tetraspanin-enriched microdomain

wt:

Wild-type

5xFAD:

5 Familial AD mutations

References

  1. Saftig P, Lichtenthaler SF (2015) The alpha secretase ADAM10: a metalloprotease with multiple functions in the brain. Prog Neurobiol 135:1–20

    Article  PubMed  CAS  Google Scholar 

  2. Howard L, Lu X, Mitchell S, Griffiths S, Glynn P (1996) Molecular cloning of MADM: a catalytically active mammalian disintegrin-metalloprotease expressed in various cell types. Biochem J 317(Pt 1):45–50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Karkkainen I, Rybnikova E, Pelto-Huikko M, Huovila AP (2000) Metalloprotease-disintegrin (ADAM) genes are widely and differentially expressed in the adult CNS. Mol Cell Neurosci 15:547–560

    Article  PubMed  CAS  Google Scholar 

  4. Marcinkiewicz M, Seidah NG (2000) Coordinated expression of beta-amyloid precursor protein and the putative beta-secretase BACE and alpha-secretase ADAM10 in mouse and human brain. J Neurochem 75:2133–2143

    Article  PubMed  CAS  Google Scholar 

  5. Anders A, Gilbert S, Garten W, Postina R, Fahrenholz F (2001) Regulation of the alpha-secretase ADAM10 by its prodomain and proprotein convertases. FASEB J 15:1837–1839

    Article  PubMed  CAS  Google Scholar 

  6. Escrevente C, Morais VA, Keller S, Soares CM, Altevogt P, Costa J (2008) Functional role of N-glycosylation from ADAM10 in processing, localization and activity of the enzyme. Biochim Biophys Acta 1780:905–913

    Article  PubMed  CAS  Google Scholar 

  7. Lopez-Perez E, Seidah NG, Checler F (1999) Proprotein convertase activity contributes to the processing of the Alzheimer’s beta-amyloid precursor protein in human cells: evidence for a role of the prohormone convertase PC7 in the constitutive alpha-secretase pathway. J Neurochem 73:2056–2062

    PubMed  CAS  Google Scholar 

  8. Lammich S, Kojro E, Postina R, Gilbert S, Pfeiffer R, Jasionowski M, Haass C, Fahrenholz F (1999) Constitutive and regulated alpha-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc Natl Acad Sci USA 96:3922–3927

    Article  PubMed  CAS  Google Scholar 

  9. Reiss K, Saftig P (2009) The “a disintegrin and metalloprotease” (ADAM) family of sheddases: physiological and cellular functions. Semin Cell Dev Biol 20:126–137

    Article  PubMed  CAS  Google Scholar 

  10. Weber S, Saftig P (2012) Ectodomain shedding and ADAMs in development. Development 139:3693–3709

    Article  PubMed  CAS  Google Scholar 

  11. Kuhn PH, Colombo AV, Schusser B, Dreymueller D, Wetzel S, Schepers U, Herber J, Ludwig A, Kremmer E, Montag D et al (2016) Systematic substrate identification indicates a central role for the metalloprotease ADAM10 in axon targeting and synapse function. Elife 5

  12. Dornier E, Coumailleau F, Ottavi JF, Moretti J, Boucheix C, Mauduit P, Schweisguth F, Rubinstein E (2012) TspanC8 tetraspanins regulate ADAM10/Kuzbanian trafficking and promote Notch activation in flies and mammals. J Cell Biol 199:481–496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Haining EJ, Yang J, Bailey RL, Khan K, Collier R, Tsai S, Watson SP, Frampton J, Garcia P, Tomlinson MG (2012) The TspanC8 subgroup of tetraspanins interacts with A disintegrin and metalloprotease 10 (ADAM10) and regulates its maturation and cell surface expression. J Biol Chem 287:39753–39765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Prox J, Willenbrock M, Weber S, Lehmann T, Schmidt-Arras D, Schwanbeck R, Saftig P, Schwake M (2012) Tetraspanin15 regulates cellular trafficking and activity of the ectodomain sheddase ADAM10. Cell Mol Life Sci 69:2919–2932

    Article  PubMed  CAS  Google Scholar 

  15. Seipold L, Damme M, Prox J, Rabe B, Kasparek P, Sedlacek R, Altmeppen H, Willem M, Boland B, Glatzel M, Saftig P (2017) Tetraspanin 3: a central endocytic membrane component regulating the expression of ADAM10, presenilin and the amyloid precursor protein. Biochim Biophys Acta 1864:217–230

    Article  PubMed  CAS  Google Scholar 

  16. Seipold L, Saftig P (2016) The emerging role of tetraspanins in the proteolytic processing of the amyloid precursor protein. Front Mol Neurosci 9:149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Matthews AL, Noy PJ, Reyat JS, Tomlinson MG (2017) Regulation of A disintegrin and metalloproteinase (ADAM) family sheddases ADAM10 and ADAM17: the emerging role of tetraspanins and rhomboids. Platelets 28:333–341

    Article  PubMed  CAS  Google Scholar 

  18. Matthews AL, Szyroka J, Collier R, Noy PJ, Tomlinson MG (2017) Scissor sisters: regulation of ADAM10 by the TspanC8 tetraspanins. Biochem Soc Trans 45:719–730

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Saint-Pol J, Eschenbrenner E, Dornier E, Boucheix C, Charrin S, Rubinstein E (2017) Regulation of the trafficking and the function of the metalloprotease ADAM10 by tetraspanins. Biochem Soc Trans 45:937–944

    Article  PubMed  CAS  Google Scholar 

  20. Zimmerman B, Kelly B, McMillan BJ, Seegar TCM, Dror RO, Kruse AC, Blacklow SC (2016) Crystal structure of a full-length human tetraspanin reveals a cholesterol-binding pocket. Cell 167(1041–1051):e1011

    Google Scholar 

  21. Zuidscherwoude M, Gottfert F, Dunlock VM, Figdor CG, van den Bogaart G, van Spriel AB (2015) The tetraspanin web revisited by super-resolution microscopy. Sci Rep 5:12201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Charrin S, le Naour F, Silvie O, Milhiet PE, Boucheix C, Rubinstein E (2009) Lateral organization of membrane proteins: tetraspanins spin their web. Biochem J 420:133–154

    Article  PubMed  CAS  Google Scholar 

  23. Hemler ME (2005) Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol 6:801–811

    Article  PubMed  CAS  Google Scholar 

  24. Jouannet S, Saint-Pol J, Fernandez L, Nguyen V, Charrin S, Boucheix C, Brou C, Milhiet PE, Rubinstein E (2016) TspanC8 tetraspanins differentially regulate the cleavage of ADAM10 substrates, Notch activation and ADAM10 membrane compartmentalization. Cell Mol Life Sci 73:1895–1915

    Article  PubMed  CAS  Google Scholar 

  25. Noy PJ, Yang J, Reyat JS, Matthews AL, Charlton AE, Furmston J, Rogers DA, Rainger GE, Tomlinson MG (2016) TspanC8 tetraspanins and A disintegrin and metalloprotease 10 (ADAM10) interact via their extracellular regions: evidence for distinct binding mechanisms for different TspanC8 proteins. J Biol Chem 291:3145–3157

    Article  PubMed  CAS  Google Scholar 

  26. Kasparek P, Krausova M, Haneckova R, Kriz V, Zbodakova O, Korinek V, Sedlacek R (2014) Efficient gene targeting of the Rosa26 locus in mouse zygotes using TALE nucleases. FEBS Lett 588:3982–3988

    Article  PubMed  CAS  Google Scholar 

  27. Zunke F, Andresen L, Wesseler S, Groth J, Arnold P, Rothaug M, Mazzulli JR, Krainc D, Blanz J, Saftig P, Schwake M (2016) Characterization of the complex formed by beta-glucocerebrosidase and the lysosomal integral membrane protein type-2. Proc Natl Acad Sci USA 113:3791–3796

    Article  PubMed  CAS  Google Scholar 

  28. Gunther W, Luchow A, Cluzeaud F, Vandewalle A, Jentsch TJ (1998) ClC-5, the chloride channel mutated in Dent’s disease, colocalizes with the proton pump in endocytotically active kidney cells. Proc Natl Acad Sci USA 95:8075–8080

    Article  PubMed  CAS  Google Scholar 

  29. Prox J, Bernreuther C, Altmeppen H, Grendel J, Glatzel M, D’Hooge R, Stroobants S, Ahmed T, Balschun D, Willem M et al (2013) Postnatal disruption of the disintegrin/metalloproteinase ADAM10 in brain causes epileptic seizures, learning deficits, altered spine morphology, and defective synaptic functions. J Neurosci 33(12915–12928):12928a

    Google Scholar 

  30. Spilker C, Nullmeier S, Grochowska KM, Schumacher A, Butnaru I, Macharadze T, Gomes GM, Yuanxiang P, Bayraktar G, Rodenstein C et al (2016) A Jacob/Nsmf gene knockout results in hippocampal dysplasia and impaired BDNF signaling in dendritogenesis. PLoS Genet 12:e1005907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Mikhaylova M, Bera S, Kobler O, Frischknecht R, Kreutz MR (2016) A dendritic golgi satellite between ERGIC and retromer. Cell Rep 14:189–199

    Article  PubMed  CAS  Google Scholar 

  32. Mangeol P, Prevo B, Peterman EJ (2016) KymographClear and KymographDirect: two tools for the automated quantitative analysis of molecular and cellular dynamics using kymographs. Mol Biol Cell 27:1948–1957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  PubMed  CAS  Google Scholar 

  34. Altmeppen HC, Prox J, Krasemann S, Puig B, Kruszewski K, Dohler F, Bernreuther C, Hoxha A, Linsenmeier L, Sikorska B et al (2015) The sheddase ADAM10 is a potent modulator of prion disease. Elife 4

  35. Kuhn PH, Wang H, Dislich B, Colombo A, Zeitschel U, Ellwart JW, Kremmer E, Rossner S, Lichtenthaler SF (2010) ADAM10 is the physiologically relevant, constitutive alpha-secretase of the amyloid precursor protein in primary neurons. EMBO J 29:3020–3032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Jorissen E, Prox J, Bernreuther C, Weber S, Schwanbeck R, Serneels L, Snellinx A, Craessaerts K, Thathiah A, Tesseur I et al (2010) The disintegrin/metalloproteinase ADAM10 is essential for the establishment of the brain cortex. J Neurosci 30:4833–4844

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Suh J, Choi SH, Romano DM, Gannon MA, Lesinski AN, Kim DY, Tanzi RE (2013) ADAM10 missense mutations potentiate beta-amyloid accumulation by impairing prodomain chaperone function. Neuron 80:385–401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Postina R, Schroeder A, Dewachter I, Bohl J, Schmitt U, Kojro E, Prinzen C, Endres K, Hiemke C, Blessing M et al (2004) A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J Clin Investig 113:1456–1464

    Article  PubMed  CAS  Google Scholar 

  39. Heikens MJ, Cao TM, Morita C, Dehart SL, Tsai S (2007) Penumbra encodes a novel tetraspanin that is highly expressed in erythroid progenitors and promotes effective erythropoiesis. Blood 109:3244–3252

    Article  PubMed  CAS  Google Scholar 

  40. Reiss K, Maretzky T, Ludwig A, Tousseyn T, de Strooper B, Hartmann D, Saftig P (2005) ADAM10 cleavage of N-cadherin and regulation of cell-cell adhesion and beta-catenin nuclear signalling. EMBO J 24:742–752

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Xie Z, Photowala H, Cahill ME, Srivastava DP, Woolfrey KM, Shum CY, Huganir RL, Penzes P (2008) Coordination of synaptic adhesion with dendritic spine remodeling by AF-6 and kalirin-7. J Neurosci 28:6079–6091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Togashi H, Abe K, Mizoguchi A, Takaoka K, Chisaka O, Takeichi M (2002) Cadherin regulates dendritic spine morphogenesis. Neuron 35:77–89

    Article  PubMed  CAS  Google Scholar 

  43. Mendez P, De Roo M, Poglia L, Klauser P, Muller D (2010) N-cadherin mediates plasticity-induced long-term spine stabilization. J Cell Biol 189:589–600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Isaacs JD, Jackson GS, Altmann DM (2006) The role of the cellular prion protein in the immune system. Clin Exp Immunol 146:1–8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Steele AD, Emsley JG, Ozdinler PH, Lindquist S, Macklis JD (2006) Prion protein (PrPc) positively regulates neural precursor proliferation during developmental and adult mammalian neurogenesis. Proc Natl Acad Sci USA 103:3416–3421

    Article  PubMed  CAS  Google Scholar 

  46. Bremer J, Baumann F, Tiberi C, Wessig C, Fischer H, Schwarz P, Steele AD, Toyka KV, Nave KA, Weis J, Aguzzi A (2010) Axonal prion protein is required for peripheral myelin maintenance. Nat Neurosci 13:310–318

    Article  PubMed  CAS  Google Scholar 

  47. Aguzzi A, Calella AM (2009) Prions: protein aggregation and infectious diseases. Physiol Rev 89:1105–1152

    Article  PubMed  CAS  Google Scholar 

  48. Soto C, Satani N (2011) The intricate mechanisms of neurodegeneration in prion diseases. Trends Mol Med 17:14–24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Collinge J (2001) Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci 24:519–550

    Article  PubMed  CAS  Google Scholar 

  50. Altmeppen HC, Prox J, Puig B, Kluth MA, Bernreuther C, Thurm D, Jorissen E, Petrowitz B, Bartsch U, De Strooper B et al (2011) Lack of a-disintegrin-and-metalloproteinase ADAM10 leads to intracellular accumulation and loss of shedding of the cellular prion protein in vivo. Mol Neurodegener 6:36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) Sonderforschungsbereich 877 [projects A3 (P.S.), Z2 (T.K., A.T.) and A12 (P.S., H.A., and M.G.)], the Creutzfeldt-Jakob Disease Foundation, Inc., and the Werner-Otto-Stiftung (to H.A.). R.S. was supported by CZ.1.05/2.1.00/19.0395 (MEYS) and Academy of Sciences of the Czech Republic (RVO 68378050). M. Mikhaylova is supported by grants from the Deutsche Forschungsgemeinschaft [DFG Emmy-Noether-Programm (Ml 1923/1-1) and FOR2419 (MI 1923/2-1)]. We gratefully thank Dr. Sebastian Wetzel and Dr. Dirk Schmidt-Arras for cloning the Tspan15-YPET construct. We also thank Kristin Hartmann (Mouse Pathology Core Unit, UKE, Hamburg) and Emanuela Szpotowicz and Chundamani Raithore (Prague) for valuable technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Saftig.

Ethics declarations

Ethical standards

All animal studies were performed according to the guidelines of the Federation of European Laboratory Animal Science Associations (FELASA) and were approved by the animal welfare committee of the Ministry of Energy, Agriculture, the Environment, Nature and Digitalization, Schleswig-Holstein, Germany (protocols V242.7224.121-3, V242-80867/2016). The use of specimens and basic clinical information were in agreement with the regulations and ethical standards at the contributing hospitals and written consent by patients or relatives was obtained where necessary.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2928 kb)

Supplementary material 2 (AVI 15119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seipold, L., Altmeppen, H., Koudelka, T. et al. In vivo regulation of the A disintegrin and metalloproteinase 10 (ADAM10) by the tetraspanin 15. Cell. Mol. Life Sci. 75, 3251–3267 (2018). https://doi.org/10.1007/s00018-018-2791-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2791-2

Keywords

Navigation