Skip to main content
Log in

Architecture and functional properties of the CFTR channel pore

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The main function of the cystic fibrosis transmembrane conductance regulator (CFTR) is as an ion channel for the movement of small anions across epithelial cell membranes. As an ion channel, CFTR must form a continuous pathway across the cell membrane—referred to as the channel pore—for the rapid electrodiffusional movement of ions. This review summarizes our current understanding of the architecture of the channel pore, as defined by electrophysiological analysis and molecular modeling studies. This includes consideration of the characteristic functional properties of the pore, definition of the overall shape of the entire extent of the pore, and discussion of how the molecular structure of distinct regions of the pore might control different facets of pore function. Comparisons are drawn with closely related proteins that are not ion channels, and also with structurally unrelated proteins with anion channel function. A simple model of pore function is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou J-L, Drumm ML, Iannuzzi MC, Collins FS, Tsui L-C (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073

    Article  CAS  PubMed  Google Scholar 

  2. Dean M, Rzhetsky A, Alikmets R (2001) The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 11:1156–1166

    Article  CAS  PubMed  Google Scholar 

  3. Rees DC, Johnson E, Lewinson O (2009) ABC transporters: the power to change. Nat Rev Mol Cell Biol 10:218–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. ter Beek J, Guskov A, Slotboom DJ (2014) Structural diversity of ABC transporters. J Gen Physiol 143:419–435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Gadsby DC, Vergani P, Csanády L (2006) The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature 440:477–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Miller PS, Aricescu AR (2014) Crystal structure of a human GABAA receptor. Nature 512:270–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Du J, Lü W, Wu S, Cheng Y, Gouaux E (2015) Glycine receptor mechanism elucidated by electron cryo-microscopy. Nature 526:224–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang X, Chen H, Michelsen K, Schneider S, Shaffer PL (2015) Crystal structure of human glycine receptor-α3 bound to antagonist strychnine. Nature 526:277–280

    Article  CAS  PubMed  Google Scholar 

  9. Accardi A (2015) Structure and gating of CLC channels and exchangers. J Physiol 593:4129–4138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pedemonte N, Galietta LJV (2014) Structure and function of TMEM16 proteins (anoctamins). Physiol Rev 94:419–459

    Article  CAS  PubMed  Google Scholar 

  11. Kane Dickson V, Pedi L, Long SB (2014) Structure and insights into the function of a Ca2+-activated Cl channel. Nature 516:213–218

    Article  PubMed  CAS  Google Scholar 

  12. Jentsch TJ, Lutter D, Planells-Cases R, Ullrich F, Voss FK (2016) VRAC: molecular identification as LRRC8 heteromers with differential functions. Pflügers Arch 468:385–393

    Article  CAS  PubMed  Google Scholar 

  13. Frizzell RA, Hanrahan JW (2012) Physiology of epithelial chloride and fluid secretion. Cold Spring Harb Perspect Med 2:a009563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Jih K-Y, Hwang T-C (2012) Nonequilibrium gating of CFTR on an equilibrium theme. Physiology 27:351–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chong PA, Kota P, Dokholyan NV, Forman-Kay JD (2013) Dynamics intrinsic to cystic fibrosis transmembrane conductance regulator function and stability. Cold Spring Harb Perspect Med 3:a009522

    PubMed  PubMed Central  Google Scholar 

  16. Hwang T-C, Kirk KL (2013) The CFTR ion channel: gating, regulation, and anion permeation. Cold Spring Harb Perspect Med 3:a009498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Linsdell P, Hanrahan JW (1998) Adenosine triphosphate-dependent asymmetry of anion permeation in the cystic fibrosis transmembrane conductance regulator chloride channel. J Gen Physiol 111:601–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McCarty NA, Zhang Z-R (2001) Identification of a region of strong discrimination in the pore of CFTR. Am J Physiol 281:L852–L867

    CAS  Google Scholar 

  19. Tabcharani JA, Linsdell P, Hanrahan JW (1997) Halide permeation in wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride channels. J Gen Physiol 110:341–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Smith SS, Steinle ED, Meyerhoff ME, Dawson DC (1999) Cystic fibrosis transmembrane conductance regulator. Physical basis for lyotropic anion selectivity patterns. J Gen Physiol 114:799–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Linsdell P, Evagelidis A, Hanrahan JW (2000) Molecular determinants of anion selectivity in the cystic fibrosis transmembrane conductance regulator chloride channel pore. Biophys J 78:2973–2982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Linsdell P (2014) Functional architecture of the CFTR chloride channel. Mol Membr Biol 31:1–16

    Article  CAS  PubMed  Google Scholar 

  23. Linsdell P (2016) Anion conductance selectivity mechanism of the CFTR chloride channel. Biochim Biophys Acta 1858:740–747

    Article  CAS  PubMed  Google Scholar 

  24. Linsdell P (2001) Relationship between anion binding and anion permeability revealed by mutagenesis within the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Physiol 531:51–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Linsdell P (2014) Cystic fibrosis transmembrane conductance regulator chloride channel blockers: pharmacological, biophysical and physiological relevance. World J Biol Chem 5:26–39

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rubaiy HN, Linsdell P (2015) Location of a permeant anion binding site in the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Physiol Sci 65:233–241

    Article  CAS  PubMed  Google Scholar 

  27. Linsdell P (2015) Interactions between permeant and blocking anions inside the CFTR chloride channel pore. Biochim Biophys Acta 1848:1573–1590

    Article  CAS  PubMed  Google Scholar 

  28. Muanprasat C, Sonawane ND, Salinas D, Taddei A, Galietta LJV, Verkman AS (2004) Discovery of glycine hydrazide pore-occluding CFTR inhibitors: mechanism, structure-activity analysis, and in vivo efficacy. J Gen Physiol 124:125–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou J-J, Fatehi M, Linsdell P (2007) Direct and indirect effects of mutations at the outer mouth of the CFTR chloride channel pore. J Membr Biol 216:129–142

    Article  CAS  PubMed  Google Scholar 

  30. Zhou J-J, Fatehi M, Linsdell P (2008) Identification of positive charges situated at the outer mouth of the CFTR chloride channel pore. Pflügers Arch 457:351–360

    Article  CAS  PubMed  Google Scholar 

  31. Bormann J, Hamill OP, Sakmann B (1987) Mechanism of anion permeation through channels gated by glycine and γ-aminobutyric acid in mouse cultured spinal neurones. J Physiol 385:243–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fahlke C (2001) Ion permeation and selectivity in ClC-type chloride channels. Am J Physiol 280:F748–F757

    CAS  Google Scholar 

  33. Machaca K, Qu Z, Kuruma A, Hartzell HC, McCarty NA (2002) The endogenous calcium-activated Cl channel in Xenopus oocytes: a physiologically and biophysically rich model system. Curr Top Membr 53:3–39

    Article  CAS  Google Scholar 

  34. Hartzell C, Putzier I, Arreola J (2005) Calcium-activated chloride channels. Annu Rev Physiol 67:719–758

    Article  CAS  PubMed  Google Scholar 

  35. Linsdell P (2006) Mechanism of chloride permeation in the cystic fibrosis transmembrane conductance regulator chloride channel. Exp Physiol 91:123–129

    Article  CAS  PubMed  Google Scholar 

  36. Reyes JP, López-Rodríguez A, Espino-Saldaña AE, Huanosta-Gutiérrez A, Miledi R, Martínez-Torres A (2014) Anion permeation in calcium-activated chloride channels formed by TMEM16A from Xenopus tropicalis. Pflügers Arch 466:1769–1777

    Article  CAS  PubMed  Google Scholar 

  37. Rosenberg MF, O’Ryan LP, Hughes G, Zhao Z, Aleksandrov LA, Riordan JR, Ford RC (2011) The cystic fibrosis transmembrane conductance regulator (CFTR). Three-dimensional structure and localization of a channel gate. J Biol Chem 286:42647–42654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hunt JF, Wang C, Ford RC (2013) Cystic fibrosis transmembrane conductance regulator (ABCC7) structure. Cold Spring Harb Perspect Med 3:a009514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Choudhury HG, Tong Z, Mathavan I, Li Y, Iwata S, Zirah S, Rebuffat S, van Veen HW, Beis K (2014) Structure of an antibacterial peptide ATP-binding cassette transporter in a novel outward occluded state. Proc Natl Acad Sci USA 111:9145–9150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee JY, Yang JG, Zhitnitsky D, Lewinson O, Rees DC (2014) Structural basis for heavy metal detoxification by an Atm1-type ABC exporter. Science 343:1133–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim J, Wu S, Tomasiak TM, Mergel C, Winter MB, Stiller SB, Robles-Colmanares Y, Stroud RM, Tampé R, Craik CS, Cheng Y (2015) Subnanometre-resolution electron cryomicroscopy structure of a heterodimeric ABC exporter. Nature 517:396–400

    Article  CAS  PubMed  Google Scholar 

  42. Mornon J-P, Hoffmann B, Jonic S, Lehn P, Callebaut I (2015) Full-open and closed CFTR channels, with lateral tunnels from the cytoplasm and an alternative position of the F508 region, as revealed by molecular dynamics. Cell Mol Life Sci 72:1377–1403

    Article  CAS  PubMed  Google Scholar 

  43. Corradi V, Vergani P, Tieleman DP (2015) Cystic fibrosis transmembrane conductance regulator (CFTR): closed and open state channel models. J Biol Chem 290:22891–22906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Linsdell P, Hanrahan JW (1996) Disulphonic stilbene block of cystic fibrosis transmembrane conductance regulator Cl channels expressed in a mammalian cell line and its regulation by a critical pore residue. J Physiol 496:687–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sheppard DN, Robinson KA (1997) Mechanism of glibenclamide inhibition of cystic fibrosis transmembrane conductance regulator Cl channels expressed in a murine cell line. J Physiol 503:333–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Linsdell P (2005) Location of a common inhibitor binding site in the cytoplasmic vestibule of the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Biol Chem 280:8945–8950

    Article  CAS  PubMed  Google Scholar 

  47. El Hiani Y, Linsdell P (2015) Functional architecture of the cytoplasmic entrance to the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Biol Chem 290:15855–15865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. El Hiani Y, Negoda A, Linsdell P (2016) Cytoplasmic pathway followed by chloride ions to enter the CFTR channel pore. Cell Mol Life Sci 73:1917–1925

    Article  PubMed  CAS  Google Scholar 

  49. El Hiani Y, Linsdell P (2014) Conformational changes opening and closing the CFTR chloride channel: insights from cysteine scanning mutagenesis. Biochem Cell Biol 92:481–488

    Article  PubMed  CAS  Google Scholar 

  50. El Hiani Y, Linsdell P (2014) Metal bridges illuminate transmembrane domain movements during gating of the cystic fibrosis transmembrane conductance regulator chloride channel. J Biol Chem 289:28149–28159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Linsdell P (2014) State-dependent blocker interactions with the CFTR chloride channel: implications for gating the pore. Pflügers Arch 466:2243–2255

    Article  CAS  PubMed  Google Scholar 

  52. Bai Y, Li M, Hwang T-C (2010) Dual roles of the sixth transmembrane segment of the CFTR chloride channel in gating and permeation. J Gen Physiol 136:293–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. El Hiani Y, Linsdell P (2010) Changes in accessibility of cytoplasmic substances to the pore associated with activation of the cystic fibrosis transmembrane conductance regulator chloride channel. J Biol Chem 285:32126–32140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Bai Y, Li M, Hwang T-C (2011) Structural basis for the channel function of a degraded ABC transporter, CFTR (ABCC7). J Gen Physiol 138:495–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Qian F, El Hiani Y, Linsdell P (2011) Functional arrangement of the 12th transmembrane region in the CFTR chloride channel based on functional investigation of a cysteine-less variant. Pflügers Arch 462:559–571

    Article  CAS  PubMed  Google Scholar 

  56. Wang W, El Hiani Y, Linsdell P (2011) Alignment of transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Gen Physiol 138:165–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gao X, Bai Y, Hwang T-C (2013) Cysteine scanning of CFTR’s first transmembrane segment reveals its plausible roles in gating and permeation. Biophys J 104:786–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fatehi M, Linsdell P (2009) Novel residues lining the CFTR chloride channel pore identified by functional modification of introduced cysteines. J Membr Biol 228:151–164

    Article  CAS  PubMed  Google Scholar 

  59. Wang W, El Hiani Y, Rubaiy HN, Linsdell P (2014) Relative contribution of different transmembrane segments to the CFTR chloride channel pore. Pflügers Arch 466:477–490

    Article  CAS  PubMed  Google Scholar 

  60. Zhang J, Hwang T-C (2015) The fifth transmembrane segment of cystic fibrosis transmembrane conductance regulator contributes to its anion permeation pathway. Biochemistry 54:3839–3850

    Article  CAS  PubMed  Google Scholar 

  61. Gupta J, Evagelidis A, Hanrahan JW, Linsdell P (2001) Asymmetric structure of the cystic fibrosis transmembrane conductance regulator chloride channel pore suggested by mutagenesis of the twelfth transmembrane region. Biochemistry 40:6620–6627

    Article  CAS  PubMed  Google Scholar 

  62. Ge N, Muise CN, Gong X, Linsdell P (2004) Direct comparison of the functional roles played by different transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Biol Chem 279:55283–55289

    Article  CAS  PubMed  Google Scholar 

  63. Zhou J-J, Li M-S, Qi J, Linsdell P (2010) Regulation of conductance by the number of fixed positive charges in the intracellular vestibule of the CFTR chloride channel pore. J Gen Physiol 135:229–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. St Aubin CN, Linsdell P (2006) Positive charges at the intracellular mouth of the pore regulate anion conduction in the CFTR chloride channel. J Gen Physiol 128:535–545

    Article  CAS  Google Scholar 

  65. Smith SS, Liu X, Zhang Z-R, Sun F, Kriewall TE, McCarty NA, Dawson DC (2001) CFTR: covalent and noncovalent modification suggests a role for fixed charges in anion conduction. J Gen Physiol 118:407–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Broadbent SD, Wang W, Linsdell P (2014) Interaction between two extracellular loops influences the activity of the cystic fibrosis transmembrane conductance regulator chloride channel. Biochem Cell Biol 92:390–396

    Article  CAS  PubMed  Google Scholar 

  67. Cui G, Rahman KS, Infield DT, Kuang C, Prince CZ, McCarty NA (2014) Three charged amino acids in extracellular loop 1 are involved in maintaining the outer pore architecture of CFTR. J Gen Physiol 144:159–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hämmerle MM, Aleksandrov AA, Riordan JR (2001) Disease-associated mutations in the extracytoplasmic loops of cystic fibrosis transmembrane conductance regulator do not impede biosynthetic processing but impair chloride channel stability. J Biol Chem 276:14848–14854

    Article  PubMed  Google Scholar 

  69. Infield DT, Cui G, Kuang C, McCarty NA (2016) Positioning of extracellular loop 1 affects pore gating of the cystic fibrosis transmembrane conductance regulator. Am J Physiol 310:L403–L414

    Google Scholar 

  70. Li M-S, Cowley EA, Linsdell P (2012) Pseudohalide anions reveal a novel extracellular site for potentiators to increase CFTR function. Br J Pharmacol 167:1062–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Broadbent SD, Ramjeesingh M, Bear CE, Argent BE, Linsdell P, Gray MA (2015) The cystic fibrosis transmembrane conductance regulator is an extracellular chloride sensor. Pflügers Arch 467:1783–1794

    Article  CAS  PubMed  Google Scholar 

  72. Wright AM, Gong X, Verdon B, Linsdell P, Mehta A, Riordan JR, Argent BE, Gray MA (2004) Novel regulation of CFTR channel gating by external chloride. J Biol Chem 279:41658–41663

    Article  CAS  PubMed  Google Scholar 

  73. Li M-S, Holstead RG, Wang W, Linsdell P (2011) Regulation of CFTR chloride channel macroscopic conductance by extracellular bicarbonate. Am J Physiol 300:C65–C74

    Article  CAS  Google Scholar 

  74. Zhou J-J, Linsdell P (2009) Evidence that extracellular anions interact with a site outside the CFTR chloride channel pore to modify channel properties. Can J Physiol Pharmacol 87:387–395

    Article  CAS  PubMed  Google Scholar 

  75. Beck EJ, Yang Y, Yaemsiri S, Raghuram V (2008) Conformational changes in a pore-lining helix coupled to cystic fibrosis transmembrane conductance regulator channel gating. J Biol Chem 283:4957–4966

    Article  CAS  PubMed  Google Scholar 

  76. Gong X, Linsdell P (2004) Maximization of the rate of chloride conduction in the CFTR channel pore by ion-ion interactions. Arch Biochem Biophys 426:78–82

    Article  CAS  PubMed  Google Scholar 

  77. Gong X, Linsdell P (2003) Molecular determinants and role of an anion binding site in the external mouth of the CFTR chloride channel pore. J Physiol 549:387–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rahman KS, Cui G, Harvey SC, McCarty NA (2013) Modeling the conformational changes underlying channel opening in CFTR. PLoS One 8:e74574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang W, Linsdell P (2012) Relative movements of transmembrane regions at the outer mouth of the cystic fibrosis transmembrane conductance regulator channel pore during channel gating. J Biol Chem 287:32136–32146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Linsdell P (2015) Metal bridges to probe membrane ion channel structure and function. Biomol Concepts 6:191–203

    Article  CAS  PubMed  Google Scholar 

  81. Zhang Z-R, Song B, McCarty NA (2005) State-dependent chemical reactivity of an engineered cysteine reveals conformational changes in the outer vestibule of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 280:41997–42003

    Article  CAS  PubMed  Google Scholar 

  82. Wang W, Linsdell P (2012) Alternating access to the transmembrane domain of the ATP-binding cassette protein cystic fibrosis transmembrane conductance regulator (ABCC7). J Biol Chem 287:10156–10165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gao X, Hwang T-C (2015) Localizing a gate in CFTR. Proc Natl Acad Sci USA 112:2461–2466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Linsdell P, Tabcharani JA, Rommens JM, Hou Y-X, Chang X-B, Tsui L-C, Riordan JR, Hanrahan JW (1997) Permeability of wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride channels to polyatomic anions. J Gen Physiol 110:355–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hille B (2001) Ion channels of excitable membranes. Sinauer, Sunderland

    Google Scholar 

  86. Gouaux E, MacKinnon R (2005) Principles of selective ion transport in channels and pumps. Science 310:1461–1465

    Article  CAS  PubMed  Google Scholar 

  87. Linsdell P, Zheng S-X, Hanrahan JW (1998) Non-pore lining amino acid side chains influence anion selectivity of the human CFTR Cl channel expressed in mammalian cell lines. J Physiol 512:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gupta J, Linsdell P (2003) Extent of the selectivity filter region in the CFTR chloride channel. Mol Membr Biol 20:45–52

    Article  CAS  PubMed  Google Scholar 

  89. McDonough S, Davidson N, Lester HA, McCarty NA (1994) Novel pore-lining residues in CFTR that govern permeation and open-channel block. Neuron 13:623–634

    Article  CAS  PubMed  Google Scholar 

  90. Fatehi M, St. Aubin CN, Linsdell P (2007) On the origin of asymmetric interactions between permeant anions and the CFTR chloride channel pore. Biophys J 92:1241–1253

    Article  CAS  PubMed  Google Scholar 

  91. El Hiani Y, Linsdell P (2012) Tuning of CFTR chloride channel function by location of positive charges within the pore. Biophys J 103:1719–1726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Sheppard DN, Travis SM, Ishihara H, Welsh MJ (1996) Contribution of proline residues in the membrane-spanning domains of cystic fibrosis transmembrane conductance regulator to chloride channel function. J Biol Chem 271:14995–15001

    Article  CAS  PubMed  Google Scholar 

  93. Cui G, Song B, Turki HW, McCarty NA (2012) Differential contribution of TM6 and TM12 to the pore of CFTR identified by three sulfonylurea-based blockers. Pflügers Arch 463:405–418

    Article  CAS  PubMed  Google Scholar 

  94. Gao X, Hwang T-C (2016) Spatial positioning of CFTR’s pore-lining residues affirms an asymmetrical contribution of transmembrane segments to the anion permeation pathway. J Gen Physiol 147:407–422

    Article  PubMed  PubMed Central  Google Scholar 

  95. Wei S, Roessler BC, Icyuz M, Chauvet S, Tao B, Hartman JL, Kirk KL (2016) Long-range coupling between the extracellular gates and the intracellular ATP binding domains of multidrug resistance protein pumps and cystic fibrosis transmembrane conductance regulator channels. FASEB J 30:1247–1262

    Article  CAS  PubMed  Google Scholar 

  96. Sorum B, Czégé D, Csanády L (2015) Timing of CFTR pore opening and structure of its transition state. Cell 163:724–733

    Article  CAS  PubMed  Google Scholar 

  97. Cui G, Zhang Z-R, O’Brien AR, Song B, McCarty NA (2008) Mutations at arginine 352 alter the pore architecture of CFTR. J Membr Biol 222:91–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jordan IK, Kota KC, Cui G, Thompson CH, McCarty NA (2008) Evolutionary and functional divergence between the cystic fibrosis transmembrane conductance regulator and related ATP-binding cassette transporters. Proc Natl Acad Sci USA 105:18865–18870

    Article  CAS  PubMed  Google Scholar 

  99. Wang W, Linsdell P (2012) Conformational change opening the CFTR chloride channel pore coupled to ATP-dependent gating. Biochim Biophys Acta 1818:851–860

    Article  PubMed  CAS  Google Scholar 

  100. St Aubin CN, Zhou J-J, Linsdell P (2007) Identification of a second blocker binding site at the cytoplasmic mouth of the cystic fibrosis transmembrane conductance regulator chloride channel pore. Mol Pharmacol 71:1360–1368

    Article  CAS  PubMed  Google Scholar 

  101. Zhou J-J, Linsdell P (2007) Molecular mechanism of arachidonic acid inhibition of the CFTR chloride channel. Eur J Pharmacol 563:88–91

    Article  CAS  PubMed  Google Scholar 

  102. Gong X, Linsdell P (2003) Coupled movement of permeant and blocking ions in the CFTR chloride channel pore. J Physiol 549:375–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sather WA, McCleskey EW (2003) Permeation and selectivity in calcium channels. Annu Rev Physiol 65:133–159

    Article  CAS  PubMed  Google Scholar 

  104. Roux B (2005) Ion conduction and selectivity in K+ channels. Annu Rev Biophys Biomol Struct 34:153–171

    Article  CAS  PubMed  Google Scholar 

  105. Zhang Z-R, Zeltwanger S, McCarty NA (2000) Direct comparison of NPPB and DPC as probes of CFTR expressed in Xenopus oocytes. J Membr Biol 175:35–52

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Linsdell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linsdell, P. Architecture and functional properties of the CFTR channel pore. Cell. Mol. Life Sci. 74, 67–83 (2017). https://doi.org/10.1007/s00018-016-2389-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2389-5

Keywords

Navigation