Skip to main content
Log in

If the cap fits, wear it: an overview of telomeric structures over evolution

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Genome organization into linear chromosomes likely represents an important evolutionary innovation that has permitted the development of the sexual life cycle; this process has consequently advanced nuclear expansion and increased complexity of eukaryotic genomes. Chromosome linearity, however, poses a major challenge to the internal cellular machinery. The need to efficiently recognize and repair DNA double-strand breaks that occur as a consequence of DNA damage presents a constant threat to native chromosome ends known as telomeres. In this review, we present a comparative survey of various solutions to the end protection problem, maintaining an emphasis on DNA structure. This begins with telomeric structures derived from a subset of prokaryotes, mitochondria, and viruses, and will progress into the typical telomere structure exhibited by higher organisms containing TTAGG-like tandem sequences. We next examine non-canonical telomeres from Drosophila melanogaster, which comprise arrays of retrotransposons. Finally, we discuss telomeric structures in evolution and possible switches between canonical and non-canonical solutions to chromosome end protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Egel R (2012) Primal eukaryogenesis: on the communal nature of precellular states, ancestral to modern life. Life 2:170–212

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lode T (2012) For quite a few chromosomes more: the origin of eukaryotes. J Mol Biol 423(2):135–142. doi:10.1016/jjmb201207005S0022-2836(12)00557-8

    Article  CAS  PubMed  Google Scholar 

  3. Ishikawa F, Naito T (1999) Why do we have linear chromosomes? A matter of Adam and Eve. Mutat Res 434(2):99–107

    Article  CAS  PubMed  Google Scholar 

  4. Deng Z, Wang Z, Lieberman PM (2012) Telomeres and viruses: common themes of genome maintenance. Front Oncol 2:201. doi:10.3389/fonc.2012.00201

    Article  PubMed  PubMed Central  Google Scholar 

  5. Valach M, Farkas Z, Fricova D, Kovac J, Brejova B, Vinar T, Pfeiffer I, Kucsera J, Tomaska L, Lang BF, Nosek J (2011) Evolution of linear chromosomes and multipartite genomes in yeast mitochondria. Nucleic Acids Res 39(10):4202–4219. doi:10.1093/nar/gkq1345gkq1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Volff JN, Altenbuchner J (2000) A new beginning with new ends: linearisation of circular chromosomes during bacterial evolution. FEMS Microbiol Lett 186(2):143–150. doi:https://doi.org/10.1111/j.1574-6968.2000.tb09095.x

    Article  CAS  PubMed  Google Scholar 

  7. McEachern MJ (2008) Telomeres: guardians of genomic integrity or double agents of evolution? In: Nosek J, Tomaska L (eds) Origin and evolution of telomeres. Land Bioscience, Austin, pp 100–113

    Google Scholar 

  8. Tomaska L, Nosek J (2009) Telomere heterogeneity: taking advantage of stochastic events. FEBS Lett 583(7):1067–1071. doi:10.1016/j.febslet.2009.02.032S0014-5793(09)00147-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Olovnikov AM (1971) Principle of marginotomy in template synthesis of polynucleotides. Dokl Akad Nauk SSSR 201(6):1496–1499

    CAS  PubMed  Google Scholar 

  10. Watson JD (1972) Origin of concatemeric T7 DNA. Nat New Biol 239(94):197–201

    Article  CAS  PubMed  Google Scholar 

  11. Zhou BB, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408(6811):433–439. doi:10.1038/35044005

    Article  CAS  PubMed  Google Scholar 

  12. Lenhart JS, Schroeder JW, Walsh BW, Simmons LA (2012) DNA repair and genome maintenance in Bacillus subtilis. Microbiol Mol Biol Rev 76(3):530–564. doi:10.1128/MMBR.05020-1176/3/530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kwon T, Huq E, Herrin DL (2010) Microhomology-mediated and nonhomologous repair of a double-strand break in the chloroplast genome of Arabidopsis. Proc Natl Acad Sci USA 107(31):13954–13959. doi:10.1073/pnas.10043261071004326107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Suyama Y, Miura K (1968) Size and structural variations of mitochondrial DNA. Proc Natl Acad Sci USA 60(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Barbour AG, Garon CF (1987) Linear plasmids of the bacterium Borrelia burgdorferi have covalently closed ends. Science 237(4813):409–411

    Article  CAS  PubMed  Google Scholar 

  16. Casjens S, Huang WM (2008) Prokaryotic telomeres: replication mechanisms and evolution. In: Nosek J, Tomaska L (eds) Origin and evolution of telomeres. Landes Bioscience, Austin, pp 154–162

    Google Scholar 

  17. McLeod MP, Warren RL, Hsiao WW, Araki N, Myhre M, Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D, Dosanjh M, Hara H, Petrescu A, Morin RD, Yang G, Stott JM, Schein JE, Shin H, Smailus D, Siddiqui AS, Marra MA, Jones SJ, Holt R, Brinkman FS, Miyauchi K, Fukuda M, Davies JE, Mohn WW, Eltis LD (2006) The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci USA 103(42):15582–15587. doi:10.1073/pnas.0607048103

    Article  PubMed  PubMed Central  Google Scholar 

  18. Redenbach M, Scheel J, Schmidt U (2000) Chromosome topology and genome size of selected actinomycetes species. Antonie Van Leeuwenhoek 78(3–4):227–235

    Article  CAS  PubMed  Google Scholar 

  19. Bendich AJ (1993) Reaching for the ring: the study of mitochondrial genome structure. Curr Genet 24(4):279–290

    Article  CAS  PubMed  Google Scholar 

  20. Nosek J, Tomaska L (2002) Mitochondrial telomeres: alternative solutions to the end-replication problem. In: Krupp G, Parwaresch R (eds) Telomeres, telomerases and cancer. Kluwer Academic/Plenum Publishers, New York, pp 396–417

  21. Raimond R, Marcade I, Bouchon D, Rigaud T, Bossy JP, Souty-Grosset C (1999) Organization of the large mitochondrial genome in the isopod Armadillidium vulgare. Genetics 151(1):203–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Morgan JA, Macbeth M, Broderick D, Whatmore P, Street R, Welch DJ, Ovenden JR (2013) Hybridisation, paternal leakage and mitochondrial DNA linearization in three anomalous fish (Scombridae). Mitochondrion. doi:10.1016/j.mito.2013.06.002

    Article  PubMed  Google Scholar 

  23. Smith DR, Kayal E, Yanagihara AA, Collins AG, Pirro S, Keeling PJ (2012) First complete mitochondrial genome sequence from a box jellyfish reveals a highly fragmented linear architecture and insights into telomere evolution. Genome Biol Evol 4(1):52–58. doi:10.1093/gbe/evr127evr127

    Article  CAS  PubMed  Google Scholar 

  24. Voigt O, Erpenbeck D, Worheide G (2008) A fragmented metazoan organellar genome: the two mitochondrial chromosomes of Hydra magnipapillata. BMC Genomics 9:350. doi:10.1186/1471-2164-9-350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Martin FN (1995) Linear mitochondrial genome organization in vivo in the genus Pythium. Curr Genet 28(3):225–234

    Article  CAS  PubMed  Google Scholar 

  26. Nosek J, Tomaska L, Fukuhara H, Suyama Y, Kovac L (1998) Linear mitochondrial genomes: 30 years down the line. Trends Genet 14(5):184–188

    Article  CAS  PubMed  Google Scholar 

  27. Baroudy BM, Venkatesan S, Moss B (1982) Incompletely base-paired flip-flop terminal loops link the two DNA strands of the vaccinia virus genome into one uninterrupted polynucleotide chain. Cell 28(2):315–324. doi:https://doi.org/10.1016/0092-8674(82)90349-x

    Article  CAS  PubMed  Google Scholar 

  28. Baroudy BM, Venkatesan S, Moss B (1983) Structure and replication of vaccinia virus telomeres. Cold Spring Harb Symp Quant Biol 47(Pt 2):723–729

    Article  PubMed  Google Scholar 

  29. Beaud G (1995) Vaccinia virus DNA replication: a short review. Biochimie 77(10):774–779. doi:https://doi.org/10.1016/0300-9084(96)88195-8

    Article  CAS  PubMed  Google Scholar 

  30. Rybchin VN, Svarchevsky AN (1999) The plasmid prophage N15: a linear DNA with covalently closed ends. Mol Microbiol 33(5):895–903. doi:https://doi.org/10.1046/j.1365-2958.1999.01533.x

    Article  CAS  PubMed  Google Scholar 

  31. Casjens SR, Gilcrease EB, Huang WM, Bunny KL, Pedulla ML, Ford ME, Houtz JM, Hatfull GF, Hendrix RW (2004) The pKO2 linear plasmid prophage of Klebsiella oxytoca. J Bacteriol 186(6):1818–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Casjens S (1999) Evolution of the linear DNA replicons of the Borrelia spirochetes. Curr Opin Microbiol 2(5):529–534. doi:https://doi.org/10.1016/s1369-5274(99)00012-0

    Article  CAS  PubMed  Google Scholar 

  33. Goodner B, Hinkle G, Gattung S, Miller N, Blanchard M, Qurollo B, Goldman BS, Cao Y, Askenazi M, Halling C, Mullin L, Houmiel K, Gordon J, Vaudin M, Iartchouk O, Epp A, Liu F, Wollam C, Allinger M, Doughty D, Scott C, Lappas C, Markelz B, Flanagan C, Crowell C, Gurson J, Lomo C, Sear C, Strub G, Cielo C, Slater S (2001) Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294(5550):2323–2328. doi:10.1126/science.1066803

    Article  CAS  PubMed  Google Scholar 

  34. Chaconas G, Kobryn K (2010) Structure, function, and evolution of linear replicons in Borrelia. Annu Rev Microbiol 64:185–202. doi:10.1146/annurev.micro.112408.134037

    Article  CAS  PubMed  Google Scholar 

  35. Kobryn K, Briffotaux J, Karpov V (2009) Holliday junction formation by the Borrelia burgdorferi telomere resolvase, ResT: implications for the origin of genome linearity. Mol Microbiol 71(5):1117–1130. doi:10.1111/j.1365-2958.2008.06584

    Article  CAS  PubMed  Google Scholar 

  36. Huang WM, DaGloria J, Fox H, Ruan Q, Tillou J, Shi K, Aihara H, Aron J, Casjens S (2012) Linear chromosome-generating system of Agrobacterium tumefaciens C58: protelomerase generates and protects hairpin ends. J Biol Chem 287(30):25551–25563. doi:10.1074/jbc.M112.369488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dinouel N, Drissi R, Miyakawa I, Sor F, Rousset S, Fukuhara H (1993) Linear mitochondrial DNAs of yeasts: closed-loop structure of the termini and possible linear-circular conversion mechanisms. Mol Cell Biol 13(4):2315–2323

    CAS  PubMed  PubMed Central  Google Scholar 

  38. de Jong RN, van der Vliet PC (1999) Mechanism of DNA replication in eukaryotic cells: cellular host factors stimulating adenovirus DNA replication. Gene 236(1):1–12. doi:https://doi.org/10.1016/s0378-1119(99)00249-8

    Article  PubMed  Google Scholar 

  39. Rekosh DM, Russell WC, Bellet AJ, Robinson AJ (1977) Identification of a protein linked to the ends of adenovirus DNA. Cell 11(2):283–295. doi:https://doi.org/10.1016/0092-8674(77)90045-9

    Article  CAS  PubMed  Google Scholar 

  40. Meijer WJ, Serna-Rico A, Salas M (2001) Characterization of the bacteriophage phi29-encoded protein p16.7: a membrane protein involved in phage DNA replication. Mol Microbiol 39(3):731–746. doi:https://doi.org/10.1046/j.1365-2958.2001.02260.x

    Article  CAS  PubMed  Google Scholar 

  41. Grahn AM, Bamford JK, O’Neill MC, Bamford DH (1994) Functional organization of the bacteriophage PRD1 genome. J Bacteriol 176(10):3062–3068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen CW, Huang CH, Lee HH, Tsai HH, Kirby R (2002) Once the circle has been broken: dynamics and evolution of Streptomyces chromosomes. Trends Genet 18(10):522–529. doi:https://doi.org/10.1016/s0168-9525(02)02752-x

    Article  CAS  PubMed  Google Scholar 

  43. Lin YR, Hahn MY, Roe JH, Huang TW, Tsai HH, Lin YF, Su TS, Chan YJ, Chen CW (2009) Streptomyces telomeres contain a promoter. J Bacteriol 191(3):773–781. doi:10.1128/JB.01299-08JB.01299-08

    Article  CAS  PubMed  Google Scholar 

  44. Chen CW, Yu TW, Lin YS, Kieser HM, Hopwood DA (1993) The conjugative plasmid SLP2 of Streptomyces lividans is a 50 kb linear molecule. Mol Microbiol 7(6):925–932

    Article  CAS  PubMed  Google Scholar 

  45. Hirochika H, Sakaguchi K (1982) Analysis of linear plasmids isolated from Streptomyces: association of protein with the ends of the plasmid DNA. Plasmid 7(1):59–65. doi:https://doi.org/10.1016/0147-619x(82)90027-0

    Article  CAS  PubMed  Google Scholar 

  46. Kirby R, Chen CW (2011) Genome architecture. In: Dyson P (ed) Streptomyces: molecular biology and biotechnology. Caister Academic Press, Norfolk, pp 5–26

    Google Scholar 

  47. Fricova D, Valach M, Farkas Z, Pfeiffer I, Kucsera J, Tomaska L, Nosek J (2010) The mitochondrial genome of the pathogenic yeast Candida subhashii: GC-rich linear DNA with a protein covalently attached to the 5′ termini. Microbiology 156(Pt 7):2153–2163. doi:10.1099/mic.0.038646-0mic.0.038646-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vahrenholz C, Riemen G, Pratje E, Dujon B, Michaelis G (1993) Mitochondrial DNA of Chlamydomonas reinhardtii: the structure of the ends of the linear 15.8-kb genome suggests mechanisms for DNA replication. Curr Genet 24(3):241–247

    Article  CAS  PubMed  Google Scholar 

  49. Nosek J, Dinouel N, Kovac L, Fukuhara H (1995) Linear mitochondrial DNAs from yeasts: telomeres with large tandem repetitions. Mol Gen Genet 247(1):61–72

    Article  CAS  PubMed  Google Scholar 

  50. Tomaska L, Nosek J, Fukuhara H (1997) Identification of a putative mitochondrial telomere-binding protein of the yeast Candida parapsilosis. J Biol Chem 272(5):3049–3056

    Article  CAS  PubMed  Google Scholar 

  51. Nosek J, Tomaska L, Pagacova B, Fukuhara H (1999) Mitochondrial telomere-binding protein from Candida parapsilosis suggests an evolutionary adaptation of a nonspecific single-stranded DNA-binding protein. J Biol Chem 274(13):8850–8857

    Article  CAS  PubMed  Google Scholar 

  52. Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T (1999) Mammalian telomeres end in a large duplex loop. Cell 97(4):503–514. doi:https://doi.org/10.1016/s0092-8674(00)80760-6

    Article  CAS  PubMed  Google Scholar 

  53. Tomaska L, Makhov AM, Griffith JD, Nosek J (2002) T-loops in yeast mitochondria. Mitochondrion 1(5):455–459. doi:https://doi.org/10.1016/s1567-7249(02)00009-0

    Article  CAS  PubMed  Google Scholar 

  54. de Lange T (2002) Protection of mammalian telomeres. Oncogene 21(4):532–540. doi:10.1038/sj.onc.1205080

    Article  PubMed  Google Scholar 

  55. Nosek J, Tomaska L (2008) Mitochondrial telomeres: an evolutionary paradigm for the emergence of telomeric structures and their replication strategies. In: Nosek J, Tomaska L (eds) Origin and evolution of telomeres. Landes Bioscience, Austin, pp 163–171

    Chapter  Google Scholar 

  56. Burger G, Forget L, Zhu Y, Gray MW, Lang BF (2003) Unique mitochondrial genome architecture in unicellular relatives of animals. Proc Natl Acad Sci USA 100(3):892–897. doi:10.1073/pnas.03361151000336115100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shukla GC, Nene V (1998) Telomeric features of Theileria parva mitochondrial DNA derived from cycle sequence data of total genomic DNA. Mol Biochem Parasitol 95(1):159–163. doi:https://doi.org/10.1016/s0166-6851(98)00098-x

    Article  CAS  PubMed  Google Scholar 

  58. Takano H, Kawano S, Kuroiwa T (1994) Genetic organization of a linear mitochondrial plasmid (mF) that promotes mitochondrial fusion in Physarum polycephalum. Curr Genet 26(5–6):506–511

    Article  CAS  PubMed  Google Scholar 

  59. Walther TC, Kennell JC (1999) Linear mitochondrial plasmids of F. oxysporum are novel, telomere-like retroelements. Mol Cell 4(2):229–238. doi:https://doi.org/10.1016/s1097-2765(00)80370-6

    Article  CAS  PubMed  Google Scholar 

  60. Given D, Yee D, Griem K, Kieff E (1979) DNA of Epstein–Barr virus. V. Direct repeats of the ends of Epstein–Barr virus DNA. J Virol 30(3):852–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zimmermann J, Hammerschmidt W (1995) Structure and role of the terminal repeats of Epstein–Barr virus in processing and packaging of virion DNA. J Virol 69(5):3147–3155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kintner CR, Sugden B (1979) The structure of the termini of the DNA of Epstein–Barr virus. Cell 17(3):661–671. doi:https://doi.org/10.1016/0092-8674(79)90273-3

    Article  CAS  PubMed  Google Scholar 

  63. Matsuo T, Heller M, Petti L, O’Shiro E, Kieff E (1984) Persistence of the entire Epstein–Barr virus genome integrated into human lymphocyte DNA. Science 226(4680):1322–1325

    Article  CAS  PubMed  Google Scholar 

  64. Gompels UA, Macaulay HA (1995) Characterization of human telomeric repeat sequences from human herpesvirus 6 and relationship to replication. J Gen Virol 76(Pt 2):451–458

    Article  CAS  PubMed  Google Scholar 

  65. Martin ME, Thomson BJ, Honess RW, Craxton MA, Gompels UA, Liu MY, Littler E, Arrand JR, Teo I, Jones MD (1991) The genome of human herpesvirus 6: maps of unit-length and concatemeric genomes for nine restriction endonucleases. J Gen Virol 72(Pt 1):157–168

    Article  CAS  PubMed  Google Scholar 

  66. Thomson BJ, Dewhurst S, Gray D (1994) Structure and heterogeneity of the a sequences of human herpesvirus 6 strain variants U1102 and Z29 and identification of human telomeric repeat sequences at the genomic termini. J Virol 68(5):3007–3014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bulboaca GH, Deng H, Dewhurst S, Calos MP (1998) Telomeric sequences from human herpesvirus 6 do not mediate nuclear retention of episomal DNA in human cells. Arch Virol 143(3):563–570

    Article  CAS  PubMed  Google Scholar 

  68. Arbuckle JH, Medveczky MM, Luka J, Hadley SH, Luegmayr A, Ablashi D, Lund TC, Tolar J, De Meirleir K, Montoya JG, Komaroff AL, Ambros PF, Medveczky PG (2010) The latent human herpesvirus-6A genome specifically integrates in telomeres of human chromosomes in vivo and in vitro. Proc Natl Acad Sci USA 107(12):5563–5568. doi:10.1073/pnas.09135861070913586107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Arbuckle JH, Medveczky PG (2011) The molecular biology of human herpesvirus-6 latency and telomere integration. Microbes Infect 13(8–9):731–741. doi:10.1016/j.micinf.2011.03.006S1286-4579(11)00089-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kaufer BB, Jarosinski KW, Osterrieder N (2011) Herpesvirus telomeric repeats facilitate genomic integration into host telomeres and mobilization of viral DNA during reactivation. J Exp Med 208(3):605–615. doi:10.1084/jem.20101402jem.20101402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Blackburn EH, Gall JG (1978) A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J Mol Biol 120(1):33–53. doi:https://doi.org/10.1016/0022-2836(78)90294-2

    Article  CAS  PubMed  Google Scholar 

  72. Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, Meyne J, Ratliff RL, Wu JR (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA 85(18):6622–6626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Meyne J, Ratliff RL, Moyzis RK (1989) Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proc Natl Acad Sci USA 86(18):7049–7053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gornung E, Gabrielli I, Sola L (1998) Localization of the (TTAGGG)n telomeric sequence in zebrafish chromosomes. Genome 41(1):136–138. doi:10.1139/g97-098

    Article  CAS  Google Scholar 

  75. Cangiano G, La Volpe A (1993) Repetitive DNA sequences located in the terminal portion of the Caenorhabditis elegans chromosomes. Nucleic Acids Res 21(5):1133–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. McEachern MJ, Blackburn EH (1994) A conserved sequence motif within the exceptionally diverse telomeric sequences of budding yeasts. Proc Natl Acad Sci USA 91(8):3453–3457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Murray AW, Schultes NP, Szostak JW (1986) Chromosome length controls mitotic chromosome segregation in yeast. Cell 45(4):529–536. doi:https://doi.org/10.1016/0092-8674(86)90284-9

    Article  CAS  PubMed  Google Scholar 

  78. Shampay J, Szostak JW, Blackburn EH (1984) DNA sequences of telomeres maintained in yeast. Nature 310(5973):154–157

    Article  CAS  PubMed  Google Scholar 

  79. Richards EJ, Ausubel FM (1988) Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53(1):127–136. doi:https://doi.org/10.1016/0092-8674(88)90494-1

    Article  CAS  PubMed  Google Scholar 

  80. Petracek ME, Lefebvre PA, Silflow CD, Berman J (1990) Chlamydomonas telomere sequences are A+T-rich but contain three consecutive G–C base pairs. Proc Natl Acad Sci USA 87(21):8222–8226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gatbonton T, Imbesi M, Nelson M, Akey JM, Ruderfer DM, Kruglyak L, Simon JA, Bedalov A (2006) Telomere length as a quantitative trait: genome-wide survey and genetic mapping of telomere length-control genes in yeast. PLoS Genet 2(3):e35. doi:10.1371/journal.pgen.0020035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. de Lange T (2010) How shelterin solves the telomere end-protection problem. Cold Spring Harb Symp Quant Biol 75:167–177. doi:10.1101/sqb.2010.75.017

    Article  PubMed  Google Scholar 

  83. Fajkus J, Kovarik A, Kralovics R, Bezdek M (1995) Organization of telomeric and subtelomeric chromatin in the higher plant Nicotiana tabacum. Mol Gen Genet 247(5):633–638

    Article  CAS  PubMed  Google Scholar 

  84. Greider CW, Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43(2 Pt 1):405–413. doi:https://doi.org/10.1016/0092-8674(85)90170-9

    Article  CAS  PubMed  Google Scholar 

  85. Osterhage JL, Friedman KL (2009) Chromosome end maintenance by telomerase. J Biol Chem 284(24):16061–16065. doi:10.1074/jbc.R900011200R900011200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nandakumar J, Cech TR (2013) Finding the end: recruitment of telomerase to telomeres. Nat Rev Mol Cell Biol 14(2):69–82. doi:10.1038/nrm3505nrm3505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Watson JM, Riha K (2010) Comparative biology of telomeres: where plants stand. FEBS Lett 584(17):3752–3759. doi:10.1016/j.febslet.2010.06.017S0014-5793(10)00507-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cesare AJ, Quinney N, Willcox S, Subramanian D, Griffith JD (2003) Telomere looping in P. sativum (common garden pea). Plant J 36(2):271–279. doi:https://doi.org/10.1046/j.1365-313X.2003.01882.x

    Article  CAS  PubMed  Google Scholar 

  89. Nikitina T, Woodcock CL (2004) Closed chromatin loops at the ends of chromosomes. J Cell Biol 166(2):161–165. doi:10.1083/jcb.200403118jcb.200403118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Vannier JB, Pavicic-Kaltenbrunner V, Petalcorin MI, Ding H, Boulton SJ (2012) RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity. Cell 149(4):795–806. doi:10.1016/j.cell.2012.03.030S0092-8674(12)00418-7

    Article  CAS  PubMed  Google Scholar 

  91. Chai W, Sfeir AJ, Hoshiyama H, Shay JW, Wright WE (2006) The involvement of the Mre11/Rad50/Nbs1 complex in the generation of G-overhangs at human telomeres. EMBO Rep 7(2):225–230. doi:https://doi.org/10.1038/sj.embor.7400600

    Article  CAS  PubMed  Google Scholar 

  92. Verdun RE, Crabbe L, Haggblom C, Karlseder J (2005) Functional human telomeres are recognized as DNA damage in G2 of the cell cycle. Mol Cell 20(4):551–561. doi:10.1016/j.molcel.2005.09.024

    Article  CAS  PubMed  Google Scholar 

  93. Zhu XD, Kuster B, Mann M, Petrini JH, de Lange T (2000) Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres. Nat Genet 25(3):347–352. doi:10.1038/77139

    Article  CAS  PubMed  Google Scholar 

  94. Czornak K, Chughtai S, Chrzanowska KH (2008) Mystery of DNA repair: the role of the MRN complex and ATM kinase in DNA damage repair. J Appl Genet 49(4):383–396. doi:10.1007/BF03195638473

    Article  PubMed  Google Scholar 

  95. Larrivee M, LeBel C, Wellinger RJ (2004) The generation of proper constitutive G-tails on yeast telomeres is dependent on the MRX complex. Genes Dev 18(12):1391–1396. doi:10.1101/gad.119940418/12/1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Broccoli D, Smogorzewska A, Chong L, de Lange T (1997) Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat Genet 17(2):231–235. doi:10.1038/ng1097-231

    Article  CAS  PubMed  Google Scholar 

  97. Bilaud T, Brun C, Ancelin K, Koering CE, Laroche T, Gilson E (1997) Telomeric localization of TRF2, a novel human telobox protein. Nat Genet 17(2):236–239. doi:10.1038/ng1097-236

    Article  CAS  PubMed  Google Scholar 

  98. Chong L, van Steensel B, Broccoli D, Erdjument-Bromage H, Hanish J, Tempst P, de Lange T (1995) A human telomeric protein. Science 270(5242):1663–1667

    Article  CAS  PubMed  Google Scholar 

  99. Loayza D, De Lange T (2003) POT1 as a terminal transducer of TRF1 telomere length control. Nature 423(6943):1013–1018. doi:10.1038/nature01688

    Article  CAS  PubMed  Google Scholar 

  100. Ye JZ, Donigian JR, van Overbeek M, Loayza D, Luo Y, Krutchinsky AN, Chait BT, de Lange T (2004) TIN2 binds TRF1 and TRF2 simultaneously and stabilizes the TRF2 complex on telomeres. J Biol Chem 279(45):47264–47271. doi:10.1074/jbc.M409047200

    Article  CAS  PubMed  Google Scholar 

  101. Houghtaling BR, Cuttonaro L, Chang W, Smith S (2004) A dynamic molecular link between the telomere length regulator TRF1 and the chromosome end protector TRF2. Curr Biol 14(18):1621–1631. doi:10.1016/j.cub.2004.08.052

    Article  CAS  PubMed  Google Scholar 

  102. Liu D, Safari A, O’Connor MS, Chan DW, Laegeler A, Qin J, Songyang Z (2004) PTOP interacts with POT1 and regulates its localization to telomeres. Nat Cell Biol 6(7):673–680. doi:10.1038/ncb1142ncb1142

    Article  CAS  PubMed  Google Scholar 

  103. Li B, Oestreich S, de Lange T (2000) Identification of human Rap1: implications for telomere evolution. Cell 101(5):471–483. doi:https://doi.org/10.1016/s0092-8674(00)80858-2

    Article  CAS  PubMed  Google Scholar 

  104. Stansel RM, de Lange T, Griffith JD (2001) T-loop assembly in vitro involves binding of TRF2 near the 3′ telomeric overhang. EMBO J 20(19):5532–5540. doi:10.1093/emboj/20.19.5532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang RC, Smogorzewska A, de Lange T (2004) Homologous recombination generates T-loop-sized deletions at human telomeres. Cell 119(3):355–368. doi:10.1016/j.cell.2004.10.011

    Article  CAS  PubMed  Google Scholar 

  106. Fouche N, Cesare AJ, Willcox S, Ozgur S, Compton SA, Griffith JD (2006) The basic domain of TRF2 directs binding to DNA junctions irrespective of the presence of TTAGGG repeats. J Biol Chem 281(49):37486–37495. doi:10.1074/jbc.M608778200

    Article  CAS  PubMed  Google Scholar 

  107. Bianchi A, Smith S, Chong L, Elias P, de Lange T (1997) TRF1 is a dimer and bends telomeric DNA. EMBO J 16(7):1785–1794. doi:10.1093/emboj/16.7.1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Verdun RE, Karlseder J (2006) The DNA damage machinery and homologous recombination pathway act consecutively to protect human telomeres. Cell 127(4):709–720. doi:10.1016/j.cell.2006.09.034

    Article  CAS  PubMed  Google Scholar 

  109. Lewis KA, Wuttke DS (2012) Telomerase and telomere-associated proteins: structural insights into mechanism and evolution. Structure 20(1):28–39. doi:10.1016/j.str.2011.10.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gottschling DE, Zakian VA (1986) Telomere proteins: specific recognition and protection of the natural termini of Oxytricha macronuclear DNA. Cell 47(2):195–205. doi:https://doi.org/10.1016/0092-8674(86)90442-3

    Article  CAS  PubMed  Google Scholar 

  111. Horvath MP, Schweiker VL, Bevilacqua JM, Ruggles JA, Schultz SC (1998) Crystal structure of the Oxytricha nova telomere end binding protein complexed with single-strand DNA. Cell 95(7):963–974

    Article  CAS  PubMed  Google Scholar 

  112. Baumann P, Cech TR (2001) Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292(5519):1171–1175. doi:10.1126/science.1060036

    Article  CAS  PubMed  Google Scholar 

  113. Churikov D, Price CM (2008) Pot1 and cell cycle progression cooperate in telomere length regulation. Nat Struct Mol Biol 15(1):79–84

    Article  CAS  PubMed  Google Scholar 

  114. Hockemeyer D, Sfeir AJ, Shay JW, Wright WE, de Lange T (2005) POT1 protects telomeres from a transient DNA damage response and determines how human chromosomes end. EMBO J 24(14):2667–2678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wu L, Multani AS, He H, Cosme-Blanco W, Deng Y, Deng JM, Bachilo O, Pathak S, Tahara H, Bailey SM, Behringer RR, Chang S (2006) Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres. Cell 126(1):49–62

    Article  CAS  PubMed  Google Scholar 

  116. Baumann P, Price C (2010) Pot1 and telomere maintenance. FEBS Lett 584(17):3779–3784. doi:10.1016/j.febslet.2010.05.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gao H, Cervantes RB, Mandell EK, Otero JH, Lundblad V (2007) RPA-like proteins mediate yeast telomere function. Nat Struct Mol Biol 14(3):208–214

    Article  CAS  PubMed  Google Scholar 

  118. Giraud-Panis MJ, Teixeira MT, Geli V, Gilson E (2010) CST meets shelterin to keep telomeres in check. Mol Cell 39(5):665–676. doi:10.1016/j.molcel.2010.08.024

    Article  CAS  PubMed  Google Scholar 

  119. Maringele L, Lydall D (2002) EXO1-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Delta mutants. Genes Dev 16(15):1919–1933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Nugent CI, Hughes TR, Lue NF, Lundblad V (1996) Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274(5285):249–252

    Article  CAS  PubMed  Google Scholar 

  121. Miyake Y, Nakamura M, Nabetani A, Shimamura S, Tamura M, Yonehara S, Saito M, Ishikawa F (2009) RPA-like mammalian Ctc1-Stn1-Ten1 complex binds to single-stranded DNA and protects telomeres independently of the Pot1 pathway. Mol Cell 36(2):193–206

    Article  CAS  PubMed  Google Scholar 

  122. Song X, Leehy K, Warrington RT, Lamb JC, Surovtseva YV, Shippen DE (2008) STN1 protects chromosome ends in Arabidopsis thaliana. Proc Natl Acad Sci USA 105(50):19815–19820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Surovtseva YV, Churikov D, Boltz KA, Song X, Lamb JC, Warrington R, Leehy K, Heacock M, Price CM, Shippen DE (2009) Conserved telomere maintenance component 1 interacts with STN1 and maintains chromosome ends in higher eukaryotes. Mol Cell 36(2):207–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gu P, Min JN, Wang Y, Huang C, Peng T, Chai W, Chang S (2012) CTC1 deletion results in defective telomere replication, leading to catastrophic telomere loss and stem cell exhaustion. EMBO J 31(10):2309–2321. doi:10.1038/emboj.2012.96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Huang C, Dai X, Chai W (2012) Human Stn1 protects telomere integrity by promoting efficient lagging-strand synthesis at telomeres and mediating C-strand fill-in. Cell Res 22(12):1681–1695. doi:10.1038/cr.2012.132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wang F, Stewart JA, Kasbek C, Zhao Y, Wright WE, Price CM (2012) Human CST has independent functions during telomere duplex replication and C-strand fill-in. Cell Rep 2(5):1096–1103. doi:10.1016/j.celrep.2012.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Raices M, Verdun RE, Compton SA, Haggblom CI, Griffith JD, Dillin A, Karlseder J (2008) C. elegans telomeres contain G-strand and C-strand overhangs that are bound by distinct proteins. Cell 132(5):745–757. doi:10.1016/j.cell.2007.12.039

    Article  CAS  PubMed  Google Scholar 

  128. Lackner DH, Raices M, Maruyama H, Haggblom C, Karlseder J (2012) Organismal propagation in the absence of a functional telomerase pathway in Caenorhabditis elegans. EMBO J 31(8):2024–2033. doi:10.1038/emboj.2012.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Oganesian L, Karlseder J (2011) Mammalian 5′ C-rich telomeric overhangs are a mark of recombination-dependent telomere maintenance. Mol Cell 42(2):224–236. doi:10.1016/j.molcel.2011.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Oganesian L, Karlseder J (2013) 5′ C-rich telomeric overhangs are an outcome of rapid telomere truncation events. DNA Repair (Amst) 12(3):238–245. doi:10.1016/j.dnarep.2012.12.008

    Article  CAS  Google Scholar 

  131. McElligott R, Wellinger RJ (1997) The terminal DNA structure of mammalian chromosomes. EMBO J 16(12):3705–3714. doi:10.1093/emboj/16.12.3705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Makarov VL, Hirose Y, Langmore JP (1997) Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 88(5):657–666. doi:https://doi.org/10.1016/s0092-8674(00)81908-x

    Article  CAS  PubMed  Google Scholar 

  133. Lenain C, Bauwens S, Amiard S, Brunori M, Giraud-Panis MJ, Gilson E (2006) The Apollo 5′ exonuclease functions together with TRF2 to protect telomeres from DNA repair. Curr Biol 16(13):1303–1310. doi:10.1016/j.cub.2006.05.021

    Article  CAS  PubMed  Google Scholar 

  134. Wu P, van Overbeek M, Rooney S, de Lange T (2010) Apollo contributes to G overhang maintenance and protects leading-end telomeres. Mol Cell 39(4):606–617. doi:10.1016/j.molcel.2010.06.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wu P, Takai H, de Lange T (2012) Telomeric 3′ overhangs derive from resection by Exo1 and Apollo and fill-in by POT1b-associated CST. Cell 150(1):39–52. doi:10.1016/j.cell.2012.05.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Riha K, McKnight TD, Fajkus J, Vyskot B, Shippen DE (2000) Analysis of the G-overhang structures on plant telomeres: evidence for two distinct telomere architectures. Plant J 23(5):633–641. doi:https://doi.org/10.1046/j.1365-313x.2000.00831.x

    Article  CAS  PubMed  Google Scholar 

  137. Kazda A, Zellinger B, Rossler M, Derboven E, Kusenda B, Riha K (2012) Chromosome end protection by blunt-ended telomeres. Genes Dev 26(15):1703–1713. doi:10.1101/gad.194944.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Muller HJ (1938) The remaking of chromosomes. Collecting Net 8:182–198

    Google Scholar 

  139. Abad JP, De Pablos B, Osoegawa K, De Jong PJ, Martin-Gallardo A, Villasante A (2004) TAHRE, a novel telomeric retrotransposon from Drosophila melanogaster, reveals the origin of Drosophila telomeres. Mol Biol Evol 21(9):1620–1624. doi:10.1093/molbev/msh180

    Article  CAS  PubMed  Google Scholar 

  140. Levis RW, Ganesan R, Houtchens K, Tolar LA, Sheen FM (1993) Transposons in place of telomeric repeats at a Drosophila telomere. Cell 75(6):1083–1093. doi:https://doi.org/10.1016/0092-8674(93)90318-k

    Article  CAS  PubMed  Google Scholar 

  141. Rubin GM (1978) Isolation of a telomeric DNA sequence from Drosophila melanogaster. Cold Spring Harb Symp Quant Biol 42(Pt 2):1041–1046

    Article  CAS  PubMed  Google Scholar 

  142. Young BS, Pession A, Traverse KL, French C, Pardue ML (1983) Telomere regions in Drosophila share complex DNA sequences with pericentric heterochromatin. Cell 34(1):85–94. doi:https://doi.org/10.1016/0092-8674(83)90138-1

    Article  CAS  PubMed  Google Scholar 

  143. Rashkova S, Athanasiadis A, Pardue ML (2003) Intracellular targeting of gag proteins of the Drosophila telomeric retrotransposons. J Virol 77(11):6376–6384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Rashkova S, Karam SE, Kellum R, Pardue ML (2002) Gag proteins of the two Drosophila telomeric retrotransposons are targeted to chromosome ends. J Cell Biol 159(3):397–402. doi:10.1083/jcb.200205039jcb.200205039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Rashkova S, Karam SE, Pardue ML (2002) Element-specific localization of Drosophila retrotransposon gag proteins occurs in both nucleus and cytoplasm. Proc Natl Acad Sci USA 99(6):3621–3626. doi:10.1073/pnas.032071999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Sasaki T, Fujiwara H (2000) Detection and distribution patterns of telomerase activity in insects. Eur J Biochem 267(10):3025–3031. doi:https://doi.org/10.1046/j.1432-1033.2000.01323.x

    Article  CAS  PubMed  Google Scholar 

  147. Biessmann H, Mason JM, Ferry K, d’Hulst M, Valgeirsdottir K, Traverse KL, Pardue ML (1990) Addition of telomere-associated HeT DNA sequences “heals” broken chromosome ends in Drosophila. Cell 61(4):663–673. doi:https://doi.org/10.1016/0092-8674(90)90478-w

    Article  CAS  PubMed  Google Scholar 

  148. Sheen FM, Levis RW (1994) Transposition of the LINE-like retrotransposon TART to Drosophila chromosome termini. Proc Natl Acad Sci USA 91(26):12510–12514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Nakamura TM, Cech TR (1998) Reversing time: origin of telomerase. Cell 92(5):587–590. doi:https://doi.org/10.1016/s0092-8674(00)81123-x

    Article  CAS  PubMed  Google Scholar 

  150. Danilevskaya ON, Arkhipova IR, Traverse KL, Pardue ML (1997) Promoting in tandem: the promoter for telomere transposon HeT-A and implications for the evolution of retroviral LTRs. Cell 88(5):647–655. doi:https://doi.org/10.1016/s0092-8674(00)81907-8

    Article  CAS  PubMed  Google Scholar 

  151. Danilevskaya ON, Traverse KL, Hogan NC, DeBaryshe PG, Pardue ML (1999) The two Drosophila telomeric transposable elements have very different patterns of transcription. Mol Cell Biol 19(1):873–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Capkova Frydrychova R, Biessmann H, Mason JM (2008) Regulation of telomere length in Drosophila. Cytogenet Genome Res 122(3–4):356–364. doi:10.1159/000167823

    Article  CAS  PubMed  Google Scholar 

  153. Pardue ML, Danilevskaya ON, Lowenhaupt K, Slot F, Traverse KL (1996) Drosophila telomeres: new views on chromosome evolution. Trends Genet 12(2):48–52. doi:https://doi.org/10.1016/0168-9525(96)81399-0

    Article  CAS  PubMed  Google Scholar 

  154. Levis RW (1989) Viable deletions of a telomere from a Drosophila chromosome. Cell 58(4):791–801. doi:https://doi.org/10.1016/0092-8674(89)90112-8

    Article  CAS  PubMed  Google Scholar 

  155. Mason JM, Strobel E, Green MM (1984) μ-2: mutator gene in Drosophila that potentiates the induction of terminal deficiencies. Proc Natl Acad Sci USA 81(19):6090–6094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Biessmann H, Carter SB, Mason JM (1990) Chromosome ends in Drosophila without telomeric DNA sequences. Proc Natl Acad Sci USA 87(5):1758–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Biessmann H, Mason JM (1988) Progressive loss of DNA sequences from terminal chromosome deficiencies in Drosophila melanogaster. EMBO J 7(4):1081–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kern AD, Begun DJ (2008) Recurrent deletion and gene presence/absence polymorphism: telomere dynamics dominate evolution at the tip of 3L in Drosophila melanogaster and D. simulans. Genetics 179(2):1021–1027. doi:10.1534/genetics.107.078345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Raffa GD, Ciapponi L, Cenci G, Gatti M (2011) Terminin: a protein complex that mediates epigenetic maintenance of Drosophila telomeres. Nucleus 2(5):383–391. doi:10.4161/nucl.2.5.17873

    Article  PubMed  Google Scholar 

  160. Cenci G, Siriaco G, Raffa GD, Kellum R, Gatti M (2003) The Drosophila HOAP protein is required for telomere capping. Nat Cell Biol 5(1):82–84. doi:10.1038/ncb902ncb902

    Article  CAS  PubMed  Google Scholar 

  161. Fanti L, Giovinazzo G, Berloco M, Pimpinelli S (1998) The heterochromatin protein 1 prevents telomere fusions in Drosophila. Mol Cell 2(5):527–538. doi:https://doi.org/10.1016/s1097-2765(00)80152-5

    Article  CAS  PubMed  Google Scholar 

  162. Gao G, Walser JC, Beaucher ML, Morciano P, Wesolowska N, Chen J, Rong YS (2010) HipHop interacts with HOAP and HP1 to protect Drosophila telomeres in a sequence-independent manner. EMBO J 29(4):819–829. doi:10.1038/emboj.2009.394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Raffa GD, Raimondo D, Sorino C, Cugusi S, Cenci G, Cacchione S, Gatti M, Ciapponi L (2010) Verrocchio, a Drosophila OB fold-containing protein, is a component of the terminin telomere-capping complex. Genes Dev 24(15):1596–1601. doi:10.1101/gad.57481024/15/1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Raffa GD, Siriaco G, Cugusi S, Ciapponi L, Cenci G, Wojcik E, Gatti M (2009) The Drosophila Modigliani (moi) gene encodes a HOAP-interacting protein required for telomere protection. Proc Natl Acad Sci USA 106(7):2271–2276. doi:10.1073/pnas.08127021060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Shareef MM, King C, Damaj M, Badagu R, Huang DW, Kellum R (2001) Drosophila heterochromatin protein 1 (HP1)/origin recognition complex (ORC) protein is associated with HP1 and ORC and functions in heterochromatin-induced silencing. Mol Biol Cell 12(6):1671–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Komonyi O, Schauer T, Papai G, Deak P, Boros IM (2009) A product of the bicistronic Drosophila melanogaster gene CG31241, which also encodes a trimethylguanosine synthase, plays a role in telomere protection. J Cell Sci 122(Pt 6):769–774. doi:10.1242/jcs.035097jcs.035097

    Article  CAS  PubMed  Google Scholar 

  167. Titen SW, Golic KG (2010) Healing of euchromatic chromosome breaks by efficient de novo telomere addition in Drosophila melanogaster. Genetics 184(1):309–312. doi:10.1534/genetics.109.109934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Cenci G, Rawson RB, Belloni G, Castrillon DH, Tudor M, Petrucci R, Goldberg ML, Wasserman SA, Gatti M (1997) UbcD1, a Drosophila ubiquitin-conjugating enzyme required for proper telomere behavior. Genes Dev 11(7):863–875

    Article  CAS  PubMed  Google Scholar 

  169. Raffa GD, Cenci G, Siriaco G, Goldberg ML, Gatti M (2005) The putative Drosophila transcription factor woc is required to prevent telomeric fusions. Mol Cell 20(6):821–831. doi:10.1016/j.molcel.2005.12.003

    Article  CAS  PubMed  Google Scholar 

  170. Bi X, Srikanta D, Fanti L, Pimpinelli S, Badugu R, Kellum R, Rong YS (2005) Drosophila ATM and ATR checkpoint kinases control partially redundant pathways for telomere maintenance. Proc Natl Acad Sci USA 102(42):15167–15172. doi:10.1073/pnas.0504981102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Bi X, Wei SC, Rong YS (2004) Telomere protection without a telomerase; the role of ATM and Mre11 in Drosophila telomere maintenance. Curr Biol 14(15):1348–1353. doi:10.1016/j.cub.2004.06.063

    Article  CAS  PubMed  Google Scholar 

  172. Ciapponi L, Cenci G, Ducau J, Flores C, Johnson-Schlitz D, Gorski MM, Engels WR, Gatti M (2004) The Drosophila Mre11/Rad50 complex is required to prevent both telomeric fusion and chromosome breakage. Curr Biol 14(15):1360–1366. doi:10.1016/j.cub.2004.07.019

    Article  CAS  PubMed  Google Scholar 

  173. Ciapponi L, Cenci G, Gatti M (2006) The Drosophila Nbs protein functions in multiple pathways for the maintenance of genome stability. Genetics 173(3):1447–1454. doi:10.1534/genetics.106.058081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Oikemus SR, McGinnis N, Queiroz-Machado J, Tukachinsky H, Takada S, Sunkel CE, Brodsky MH (2004) Drosophila atm/telomere fusion is required for telomeric localization of HP1 and telomere position effect. Genes Dev 18(15):1850–1861. doi:10.1101/gad.12025041202504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Okazaki S, Tsuchida K, Maekawa H, Ishikawa H, Fujiwara H (1993) Identification of a pentanucleotide telomeric sequence, (TTAGG)n, in the silkworm Bombyx mori and in other insects. Mol Cell Biol 13(3):1424–1432

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Okazaki S, Ishikawa H, Fujiwara H (1995) Structural analysis of TRAS1, a novel family of telomeric repeat-associated retrotransposons in the silkworm Bombyx mori. Mol Cell Biol 15(8):4545–4552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Takahashi H, Okazaki S, Fujiwara H (1997) A new family of site-specific retrotransposons, SART1, is inserted into telomeric repeats of the silkworm Bombyx mori. Nucleic Acids Res 25(8):1578–1584. doi:https://doi.org/10.1093/nar/25.8.1578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Anzai T, Takahashi H, Fujiwara H (2001) Sequence-specific recognition and cleavage of telomeric repeat (TTAGG)(n) by endonuclease of non-long terminal repeat retrotransposon TRAS1. Mol Cell Biol 21(1):100–108. doi:10.1128/MCB.21.1.100-108.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Osanai M, Kojima KK, Futahashi R, Yaguchi S, Fujiwara H (2006) Identification and characterization of the telomerase reverse transcriptase of Bombyx mori (silkworm) and Tribolium castaneum (flour beetle). Gene 376(2):281–289. doi:https://doi.org/10.1016/j.gene.2006.04.022

    Article  CAS  PubMed  Google Scholar 

  180. Fujiwara H, Osanai M, Matsumoto T, Kojima KK (2005) Telomere-specific non-LTR retrotransposons and telomere maintenance in the silkworm Bombyx mori. Chromosome Res 13(5):455–467. doi:10.1007/s10577-005-0990-9

    Article  CAS  PubMed  Google Scholar 

  181. Cohn M, Edstrom JE (1992) Telomere-associated repeats in Chironomus form discrete subfamilies generated by gene conversion. J Mol Evol 35(2):114–122

    Article  CAS  PubMed  Google Scholar 

  182. Biessmann H, Donath J, Walter MF (1996) Molecular characterization of the Anopheles gambiae 2L telomeric region via an integrated transgene. Insect Mol Biol 5(1):11–20

    Article  CAS  PubMed  Google Scholar 

  183. Roth CW, Kobeski F, Walter MF, Biessmann H (1997) Chromosome end elongation by recombination in the mosquito Anopheles gambiae. Mol Cell Biol 17(9):5176–5183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Walter MF, Bozorgnia L, Maheshwari A, Biessmann H (2001) The rate of terminal nucleotide loss from a telomere of the mosquito Anopheles gambiae. Insect Mol Biol 10(1):105–110. doi:https://doi.org/10.1046/j.1365-2583.2001.00245.x

    Article  CAS  PubMed  Google Scholar 

  185. Pich U, Fuchs J, Schubert I (1996) How do Alliaceae stabilize their chromosome ends in the absence of TTTAGGG sequences? Chromosome Res 4(3):207–213

    Article  CAS  PubMed  Google Scholar 

  186. Fulneckova J, Hasikova T, Fajkus J, Lukesova A, Elias M, Sykorova E (2012) Dynamic evolution of telomeric sequences in the green algal order Chlamydomonadales. Genome Biol Evol 4(3):248–264. doi:10.1093/gbe/evs007evs007

    Article  PubMed  PubMed Central  Google Scholar 

  187. Sykorova E, Lim KY, Chase MW, Knapp S, Leitch IJ, Leitch AR, Fajkus J (2003) The absence of Arabidopsis-type telomeres in cestrum and closely related genera Vestia and Sessea (Solanaceae): first evidence from eudicots. Plant J 34(3):283–291. doi:https://doi.org/10.1046/j.1365-313X.2003.01731.x

    Article  CAS  PubMed  Google Scholar 

  188. Peska V, Sykorova E, Fajkus J (2008) Two faces of Solanaceae telomeres: a comparison between Nicotiana and Cestrum telomeres and telomere-binding proteins. Cytogenet Genome Res 122(3–4):380–387. doi:10.1159/000167826000167826

    Article  CAS  PubMed  Google Scholar 

  189. Fukuhara H, Sor F, Drissi R, Dinouel N, Miyakawa I, Rousset S, Viola AM (1993) Linear mitochondrial DNAs of yeasts: frequency of occurrence and general features. Mol Cell Biol 13(4):2309–2314

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Kosa P, Valach M, Tomaska L, Wolfe KH, Nosek J (2006) Complete DNA sequences of the mitochondrial genomes of the pathogenic yeasts Candida orthopsilosis and Candida metapsilosis: insight into the evolution of linear DNA genomes from mitochondrial telomere mutants. Nucleic Acids Res 34(8):2472–2481. doi:https://doi.org/10.1093/nar/gkl327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Wood DW, Setubal JC, Kaul R, Monks DE, Kitajima JP, Okura VK, Zhou Y, Chen L, Wood GE, Almeida NF Jr, Woo L, Chen Y, Paulsen IT, Eisen JA, Karp PD, Bovee D Sr, Chapman P, Clendenning J, Deatherage G, Gillet W, Grant C, Kutyavin T, Levy R, Li MJ, McClelland E, Palmieri A, Raymond C, Rouse G, Saenphimmachak C, Wu Z, Romero P, Gordon D, Zhang S, Yoo H, Tao Y, Biddle P, Jung M, Krespan W, Perry M, Gordon-Kamm B, Liao L, Kim S, Hendrick C, Zhao ZY, Dolan M, Chumley F, Tingey SV, Tomb JF, Gordon MP, Olson MV, Nester EW (2001) The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294(5550):2317–2323. doi:10.1126/science.1066804

    Article  CAS  PubMed  Google Scholar 

  192. Nosek J, Tomaska L (2003) Mitochondrial genome diversity: evolution of the molecular architecture and replication strategy. Curr Genet 44(2):73–84. doi:10.1007/s00294-003-0426-z

    Article  CAS  PubMed  Google Scholar 

  193. Schardl CL, Lonsdale DM, Pring DR, Rose KR (1984) Linearization of maize mitochondrial chromosomes by recombination with linear episomes. Nature 310:292–296. doi:10.1038/310292a0

    Article  CAS  Google Scholar 

  194. Swart EC, Nowacki M, Shum J, Stiles H, Higgins BP, Doak TG, Schotanus K, Magrini VJ, Minx P, Mardis ER, Landweber LF (2012) The Oxytricha trifallax mitochondrial genome. Genome Biol Evol 4(2):136–154. doi:10.1093/gbe/evr136evr136

    Article  CAS  PubMed  Google Scholar 

  195. Takano H, Kawano S, Kuroiwa T (1992) Constitutive homologous recombination between mitochondrial DNA and a linear mitochondrial plasmid in Physarum polycephalum. Curr Genet 22(3):221–227

    Article  CAS  PubMed  Google Scholar 

  196. Kempken F (1995) Horizontal transfer of a mitochondrial plasmid. Mol Gen Genet 248(1):89–94

    Article  CAS  PubMed  Google Scholar 

  197. Handa H (2008) Linear plasmids in plant mitochondria: peaceful coexistences or malicious invasions? Mitochondrion 8(1):15–25

    Article  CAS  PubMed  Google Scholar 

  198. Delaroque N, Boland W, Muller DG, Knippers R (2003) Comparisons of two large phaeoviral genomes and evolutionary implications. J Mol Evol 57(6):613–622. doi:10.1007/s00239-003-2501-y

    Article  CAS  PubMed  Google Scholar 

  199. Delaroque N, Muller DG, Bothe G, Pohl T, Knippers R, Boland W (2001) The complete DNA sequence of the Ectocarpus siliculosus Virus EsV-1 genome. Virology 287(1):112–132. doi:10.1006/viro.2001.1028

    Article  CAS  PubMed  Google Scholar 

  200. Wilson WH, Schroeder DC, Allen MJ, Holden MT, Parkhill J, Barrell BG, Churcher C, Hamlin N, Mungall K, Norbertczak H, Quail MA, Price C, Rabbinowitsch E, Walker D, Craigon M, Roy D, Ghazal P (2005) Complete genome sequence and lytic phase transcription profile of a Coccolithovirus. Science 309(5737):1090–1092. doi:10.1126/science.1113109

    Article  CAS  PubMed  Google Scholar 

  201. Kirby R (2011) Chromosome diversity and similarity within the Actinomycetales. FEMS Microbiol Lett 319(1):1–10. doi:10.1111/j.1574-6968.2011.02242.x

    Article  CAS  PubMed  Google Scholar 

  202. Chen CW (2007) Streptomyces linear plasmids: replication and telomeres. In: Meinhardt F, Klassen R (eds) Microbial linear plasmids. Springer, Berlin Heidelberg New York, pp 33–61

    Chapter  Google Scholar 

  203. de Lange T (2004) T-loops and the origin of telomeres. Nat Rev Mol Cell Biol 5(4):323–329. doi:10.1038/nrm1359nrm1359

    Article  PubMed  Google Scholar 

  204. Nosek J, Kosa P, Tomaska L (2006) On the origin of telomeres: a glimpse at the pre-telomerase world. BioEssays 28(2):182–190. doi:10.1002/bies.20355

    Article  CAS  PubMed  Google Scholar 

  205. Malik HS, Burke WD, Eickbush TH (2000) Putative telomerase catalytic subunits from Giardia lamblia and Caenorhabditis elegans. Gene 251(2):101–108. doi:https://doi.org/10.1016/s0378-1119(00)00207-9

    Article  CAS  PubMed  Google Scholar 

  206. Fajkus J, Sykorova E, Leitch AR (2005) Telomeres in evolution and evolution of telomeres. Chromosome Res 13(5):469–479. doi:10.1007/s10577-005-0997-2

    Article  CAS  PubMed  Google Scholar 

  207. Jain D, Hebden AK, Nakamura TM, Miller KM, Cooper JP (2010) HAATI survivors replace canonical telomeres with blocks of generic heterochromatin. Nature 467(7312):223–227. doi:10.1038/nature09374

    Article  CAS  PubMed  Google Scholar 

  208. Lundblad V, Blackburn EH (1993) An alternative pathway for yeast telomere maintenance rescues est1- senescence. Cell 73(2):347–360. doi:https://doi.org/10.1016/0092-8674(93)90234-h

    Article  CAS  PubMed  Google Scholar 

  209. Teng SC, Chang J, McCowan B, Zakian VA (2000) Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent Rif-inhibited recombinational process. Mol Cell 6(4):947–952. doi:https://doi.org/10.1016/s1097-2765(05)00094-8

    Article  CAS  PubMed  Google Scholar 

  210. Teng SC, Zakian VA (1999) Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol Cell Biol 19(12):8083–8093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Yamada M, Hayatsu N, Matsuura A, Ishikawa F (1998) Y’-Help1, a DNA helicase encoded by the yeast subtelomeric Y’ element, is induced in survivors defective for telomerase. J Biol Chem 273(50):33360–33366

    Article  CAS  PubMed  Google Scholar 

  212. Maxwell PH, Coombes C, Kenny AE, Lawler JF, Boeke JD, Curcio MJ (2004) Ty1 mobilizes subtelomeric Y’ elements in telomerase-negative Saccharomyces cerevisiae survivors. Mol Cell Biol 24(22):9887–9898. doi:https://doi.org/10.1128/MCB.24.22.9887-9898.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Scholes DT, Kenny AE, Gamache ER, Mou Z, Curcio MJ (2003) Activation of a LTR-retrotransposon by telomere erosion. Proc Natl Acad Sci USA 100(26):15736–15741. doi:10.1073/pnas.2136609100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Our research on telomeres is supported by the Austrian Science Fund (FWF, Y418-B03) and Austrian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Riha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fulcher, N., Derboven, E., Valuchova, S. et al. If the cap fits, wear it: an overview of telomeric structures over evolution. Cell. Mol. Life Sci. 71, 847–865 (2014). https://doi.org/10.1007/s00018-013-1469-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1469-z

Keywords

Navigation