Skip to main content
Log in

RNA recognition by double-stranded RNA binding domains: a matter of shape and sequence

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The double-stranded RNA binding domain (dsRBD) is a small protein domain of 65–70 amino acids adopting an αβββα fold, whose central property is to bind to double-stranded RNA (dsRNA). This domain is present in proteins implicated in many aspects of cellular life, including antiviral response, RNA editing, RNA processing, RNA transport and, last but not least, RNA silencing. Even though proteins containing dsRBDs can bind to very specific dsRNA targets in vivo, the binding of dsRBDs to dsRNA is commonly believed to be shape-dependent rather than sequence-specific. Interestingly, recent structural information on dsRNA recognition by dsRBDs opens the possibility that this domain performs a direct readout of RNA sequence in the minor groove, allowing a global reconsideration of the principles describing dsRNA recognition by dsRBDs. We review in this article the current structural and molecular knowledge on dsRBDs, emphasizing the intricate relationship between the amino acid sequence, the structure of the domain and its RNA recognition capacity. We especially focus on the molecular determinants of dsRNA recognition and describe how sequence discrimination can be achieved by this type of domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ADAR:

Adenosine deaminase acting on RNA

DGCR8:

DiGeorge syndrome critical region 8

dsRBD:

Double-stranded RNA binding domain

dsRNA:

Double-stranded RNA

HYL1:

HYPONASTIC LEAVES1

ILF3:

Interleukin enhancer binding factor 3

PACT:

PKR activator

PKR:

Protein kinase RNA-activated

RHA:

RNA helicase A

SPNR:

Spindle perinuclear protein

TRBP:

HIV transactivation response RNA binding protein

References

  1. Gatignol A, Buckler-White A, Berkhout B, Jeang KT (1991) Characterization of a human TAR RNA-binding protein that activates the HIV-1 LTR. Science 251(5001):1597–1600

    Article  PubMed  CAS  Google Scholar 

  2. Ferrandon D, Elphick L, Nüsslein-Volhard C, St Johnston D (1994) Staufen protein associates with the 3′UTR of bicoid mRNA to form particles that move in a microtubule-dependent manner. Cell 79(7):1221–1232

    Article  PubMed  CAS  Google Scholar 

  3. Higuchi M, Single FN, Köhler M, Sommer B, Sprengel R, Seeburg PH (1993) RNA editing of AMPA receptor subunit GluR-B: a base-paired intron-exon structure determines position and efficiency. Cell 75(7):1361–1370

    Article  PubMed  CAS  Google Scholar 

  4. Nicholson AW (1999) Function, mechanism and regulation of bacterial ribonucleases. FEMS Microbiol Rev 23(3):371–390

    Article  PubMed  CAS  Google Scholar 

  5. Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409(6818):363–366

    Article  PubMed  CAS  Google Scholar 

  6. Hutvágner G, McLachlan J, Pasquinelli AE, Bálint E, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293(5531):834–838

    Article  PubMed  Google Scholar 

  7. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136(4):642–655

    Article  PubMed  CAS  Google Scholar 

  8. Fierro-Monti I, Mathews MB (2000) Proteins binding to duplexed RNA: one motif, multiple functions. Trends Biochem Sci 25(5):241–246

    Article  PubMed  CAS  Google Scholar 

  9. Saunders LR, Barber GN (2003) The dsRNA binding protein family: critical roles, diverse cellular functions. FASEB J 17(9):961–983

    Article  PubMed  CAS  Google Scholar 

  10. Tian B, Bevilacqua PC, Diegelman-Parente A, Mathews MB (2004) The double-stranded-RNA-binding motif: interference and much more. Nat Rev Mol Cell Biol 5(12):1013–1023

    Article  PubMed  CAS  Google Scholar 

  11. Maris C, Dominguez C, Allain FH-T (2005) The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J 272(9):2118–2131

    Article  PubMed  CAS  Google Scholar 

  12. Brown RS (2005) Zinc finger proteins: getting a grip on RNA. Curr Opin Struct Biol 15(1):94–98

    Article  PubMed  CAS  Google Scholar 

  13. Hall TM (2005) Multiple modes of RNA recognition by zinc finger proteins. Curr Opin Struct Biol 15(3):367–373

    Article  PubMed  CAS  Google Scholar 

  14. Lu D, Searles MA, Klug A (2003) Crystal structure of a zinc-finger-RNA complex reveals two modes of molecular recognition. Nature 426(6962):96–100

    Article  PubMed  CAS  Google Scholar 

  15. Oberstrass FC, Lee A, Stefl R, Janis M, Chanfreau G, Allain FH (2006) Shape-specific recognition in the structure of the Vts1p SAM domain with RNA. Nat Struct Mol Biol 13(2):160–167

    Article  PubMed  CAS  Google Scholar 

  16. Aviv T, Lin Z, Ben-Ari G, Smibert CA, Sicheri F (2006) Sequence-specific recognition of RNA hairpins by the SAM domain of Vts1p. Nat Struct Mol Biol 13(2):168–176

    Article  PubMed  CAS  Google Scholar 

  17. Barraud P, Allain FH-T (2012) ADAR proteins: double-stranded RNA and Z-DNA binding domains. Curr Top Microbiol Immunol 353:35–60

    Article  PubMed  CAS  Google Scholar 

  18. Schwartz T, Rould MA, Lowenhaupt K, Herbert A, Rich A (1999) Crystal structure of the Zalpha domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA. Science 284(5421):1841–1845

    Article  PubMed  CAS  Google Scholar 

  19. Placido D, Brown BA 2nd, Lowenhaupt K, Rich A, Athanasiadis A (2007) A left-handed RNA double helix bound by the Z alpha domain of the RNA-editing enzyme ADAR1. Structure 15(4):395–404

    Article  PubMed  CAS  Google Scholar 

  20. Skrisovska L, Bourgeois CF, Stefl R, Grellscheid SN, Kister L, Wenter P, Elliott DJ, Stevenin J, Allain FH (2007) The testis-specific human protein RBMY recognizes RNA through a novel mode of interaction. EMBO Rep 8(4):372–379

    Article  PubMed  CAS  Google Scholar 

  21. Oubridge C, Ito N, Evans PR, Teo CH, Nagai K (1994) Crystal structure at 1.92 A resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature 372(6505):432–438

    Article  PubMed  CAS  Google Scholar 

  22. Allain FH, Gubser CC, Howe PW, Nagai K, Neuhaus D, Varani G (1996) Specificity of ribonucleoprotein interaction determined by RNA folding during complex formulation. Nature 380(6575):646–650

    Article  PubMed  CAS  Google Scholar 

  23. Allain FH, Bouvet P, Dieckmann T, Feigon J (2000) Molecular basis of sequence-specific recognition of pre-ribosomal RNA by nucleolin. EMBO J 19(24):6870–6881

    Article  PubMed  CAS  Google Scholar 

  24. Saenger W (1984) Principles of nucleic acid structure. Springer, New York

    Book  Google Scholar 

  25. Seeman NC, Rosenberg JM, Rich A (1976) Sequence-specific recognition of double helical nucleic acids by proteins. Proc Natl Acad Sci USA 73(3):804–808

    Article  PubMed  CAS  Google Scholar 

  26. Steitz TA (1990) Structural studies of protein-nucleic acid interaction: the sources of sequence-specific binding. Q Rev Biophys 23(3):205–280

    Article  PubMed  CAS  Google Scholar 

  27. Chang K-Y, Ramos A (2005) The double-stranded RNA-binding motif, a versatile macromolecular docking platform. FEBS J 272(9):2109–2117

    Article  PubMed  CAS  Google Scholar 

  28. Stefl R, Skrisovska L, Allain FH-T (2005) RNA sequence- and shape-dependent recognition by proteins in the ribonucleoprotein particle. EMBO Rep 6(1):33–38

    Article  PubMed  CAS  Google Scholar 

  29. Chen Y, Varani G (2005) Protein families and RNA recognition. FEBS J 272(9):2088–2097

    Article  PubMed  CAS  Google Scholar 

  30. Nishikura K (2010) Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem 79:321–349

    Article  PubMed  CAS  Google Scholar 

  31. Carlson CB, Stephens OM, Beal PA (2003) Recognition of double-stranded RNA by proteins and small molecules. Biopolymers 70(1):86–102

    Article  PubMed  CAS  Google Scholar 

  32. Hall KB (2002) RNA-protein interactions. Curr Opin Struct Biol 12(3):283–288

    Article  PubMed  CAS  Google Scholar 

  33. St Johnston D, Brown NH, Gall JG, Jantsch M (1992) A conserved double-stranded RNA-binding domain. Proc Natl Acad Sci USA 89(22):10979–10983

    Article  PubMed  CAS  Google Scholar 

  34. McCormack SJ, Thomis DC, Samuel CE (1992) Mechanism of interferon action: identification of a RNA binding domain within the N-terminal region of the human RNA-dependent P1/eIF-2 alpha protein kinase. Virology 188(1):47–56

    Article  PubMed  CAS  Google Scholar 

  35. Feng GS, Chong K, Kumar A, Williams BR (1992) Identification of double-stranded RNA-binding domains in the interferon-induced double-stranded RNA-activated p68 kinase. Proc Natl Acad Sci USA 89(12):5447–5451

    Article  PubMed  CAS  Google Scholar 

  36. Green SR, Mathews MB (1992) Two RNA-binding motifs in the double-stranded RNA-activated protein kinase, DAI. Genes Dev 6(12B):2478–2490

    Article  PubMed  CAS  Google Scholar 

  37. Krovat BC, Jantsch MF (1996) Comparative mutational analysis of the double-stranded RNA binding domains of Xenopus laevis RNA-binding protein A. J Biol Chem 271(45):28112–28119

    Article  PubMed  CAS  Google Scholar 

  38. Kharrat A, Macias MJ, Gibson TJ, Nilges M, Pastore A (1995) Structure of the dsRNA binding domain of E. coli RNase III. EMBO J 14(14):3572–3584

    PubMed  CAS  Google Scholar 

  39. Bycroft M, Grünert S, Murzin AG, Proctor M, St Johnston D (1995) NMR solution structure of a dsRNA binding domain from Drosophila staufen protein reveals homology to the N-terminal domain of ribosomal protein S5. EMBO J 14(14):3563–3571

    PubMed  CAS  Google Scholar 

  40. Leulliot N, Quevillon-Cheruel S, Graille M, van Tilbeurgh H, Leeper TC, Godin KS, Edwards TE, Sigurdsson STL, Rozenkrants N, Nagel RJ et al (2004) A new alpha-helical extension promotes RNA binding by the dsRBD of Rnt1p RNAse III. EMBO J 23(13):2468–2477

    Article  PubMed  CAS  Google Scholar 

  41. Wu H, Henras A, Chanfreau G, Feigon J (2004) Structural basis for recognition of the AGNN tetraloop RNA fold by the double-stranded RNA-binding domain of Rnt1p RNase III. Proc Natl Acad Sci USA 101(22):8307–8312

    Article  PubMed  CAS  Google Scholar 

  42. Wang Z, Hartman E, Roy K, Chanfreau G, Feigon J (2011) Structure of a yeast RNase III dsRBD complex with a noncanonical RNA substrate provides new insights into binding specificity of dsRBDs. Structure 19(7):999–1010

    Article  PubMed  CAS  Google Scholar 

  43. Blaszczyk J, Gan J, Tropea JE, Court DL, Waugh DS, Ji X (2004) Noncatalytic assembly of ribonuclease III with double-stranded RNA. Structure 12(3):457–466

    Article  PubMed  CAS  Google Scholar 

  44. Gan J, Tropea JE, Austin BP, Court DL, Waugh DS, Ji X (2005) Intermediate states of ribonuclease III in complex with double-stranded RNA. Structure 13(10):1435–1442

    Article  PubMed  CAS  Google Scholar 

  45. Gan J, Tropea JE, Austin BP, Court DL, Waugh DS, Ji X (2006) Structural insight into the mechanism of double-stranded RNA processing by ribonuclease III. Cell 124(2):355–366

    Article  PubMed  CAS  Google Scholar 

  46. Gan J, Shaw G, Tropea JE, Waugh DS, Court DL, Ji X (2008) A stepwise model for double-stranded RNA processing by ribonuclease III. Mol Microbiol 67(1):143–154

    Article  PubMed  CAS  Google Scholar 

  47. Du Z, Lee JK, Tjhen R, Stroud RM, James TL (2008) Structural and biochemical insights into the dicing mechanism of mouse Dicer: a conserved lysine is critical for dsRNA cleavage. Proc Natl Acad Sci USA 105(7):2391–2396

    Article  PubMed  CAS  Google Scholar 

  48. Barraud P, Emmerth S, Shimada Y, Hotz H-R, Allain FH-T, Bühler M (2011) An extended dsRBD with a novel zinc-binding motif mediates nuclear retention of fission yeast Dicer. EMBO J 30(20):4223–4235

    Article  PubMed  CAS  Google Scholar 

  49. Weinberg DE, Nakanishi K, Patel DJ, Bartel DP (2011) The inside-out mechanism of Dicers from budding yeasts. Cell 146(2):262–276

    Article  PubMed  CAS  Google Scholar 

  50. Mueller GA, Miller MT, Derose EF, Ghosh M, London RE, Hall TMT (2010) Solution structure of the Drosha double-stranded RNA-binding domain. Silence 1(1):2

    Article  PubMed  CAS  Google Scholar 

  51. Stefl R, Xu M, Skrisovska L, Emeson RB, Allain FH-T (2006) Structure and specific RNA binding of ADAR2 double-stranded RNA binding motifs. Structure 14(2):345–355

    Article  PubMed  CAS  Google Scholar 

  52. Stefl R, Oberstrass FC, Hood JL, Jourdan M, Zimmermann M, Skrisovska L, Maris C, Peng L, Hofr C, Emeson RB et al (2010) The solution structure of the ADAR2 dsRBM–RNA complex reveals a sequence-specific readout of the minor groove. Cell 143(2):225–237

    Article  PubMed  CAS  Google Scholar 

  53. Barraud P, Heale BS, O’Connell MA, Allain FH (2012) Solution structure of the N-terminal dsRBD of Drosophila ADAR and interaction studies with RNA. Biochimie 94(7):1499–1509

    Article  PubMed  CAS  Google Scholar 

  54. Ramos A, Grünert S, Adams J, Micklem DR, Proctor MR, Freund S, Bycroft M, St Johnston D, Varani G (2000) RNA recognition by a Staufen double-stranded RNA-binding domain. EMBO J 19(5):997–1009

    Article  PubMed  CAS  Google Scholar 

  55. Ryter JM, Schultz SC (1998) Molecular basis of double-stranded RNA–protein interactions: structure of a dsRNA-binding domain complexed with dsRNA. EMBO J 17(24):7505–7513

    Article  PubMed  CAS  Google Scholar 

  56. Yang SW, Chen H-Y, Yang J, Machida S, Chua N-H, Yuan YA (2010) Structure of Arabidopsis HYPONASTIC LEAVES1 and its molecular implications for miRNA processing. Structure 18(5):594–605

    Article  PubMed  CAS  Google Scholar 

  57. Yamashita S, Nagata T, Kawazoe M, Takemoto C, Kigawa T, Guntert P, Kobayashi N, Terada T, Shirouzu M, Wakiyama M et al (2011) Structures of the first and second double-stranded RNA-binding domains of human TAR RNA-binding protein. Protein Sci 20(1):118–130

    Article  PubMed  CAS  Google Scholar 

  58. Rasia RM, Mateos J, Bologna NG, Burdisso P, Imbert L, Palatnik JF, Boisbouvier J (2010) Structure and RNA interactions of the plant MicroRNA processing-associated protein HYL1. Biochemistry 49(38):8237–8239

    Article  PubMed  CAS  Google Scholar 

  59. Huang Y, Ji L, Huang Q, Vassylyev DG, Chen X, Ma J-B (2009) Structural insights into mechanisms of the small RNA methyltransferase HEN1. Nature 461(7265):823–827

    Article  PubMed  CAS  Google Scholar 

  60. Sohn SY, Bae WJ, Kim JJ, Yeom K-H, Kim VN, Cho Y (2007) Crystal structure of human DGCR8 core. Nat Struct Mol Biol 14(9):847–853

    Article  PubMed  CAS  Google Scholar 

  61. Nanduri S, Carpick BW, Yang Y, Williams BR, Qin J (1998) Structure of the double-stranded RNA-binding domain of the protein kinase PKR reveals the molecular basis of its dsRNA-mediated activation. EMBO J 17(18):5458–5465

    Article  PubMed  CAS  Google Scholar 

  62. Nagata T, Tsuda K, Kobayashi N, Shirouzu M, Kigawa T, Guntert P, Yokoyama S, Muto Y (2012) Solution structures of the double-stranded RNA-binding domains from RNA helicase A. Proteins 80(6):1699–1706

    Article  PubMed  CAS  Google Scholar 

  63. Green SR, Manche L, Mathews MB (1995) Two functionally distinct RNA-binding motifs in the regulatory domain of the protein kinase DAI. Mol Cell Biol 15(1):358–364

    PubMed  CAS  Google Scholar 

  64. McMillan NA, Carpick BW, Hollis B, Toone WM, Zamanian-Daryoush M, Williams BR (1995) Mutational analysis of the double-stranded RNA (dsRNA) binding domain of the dsRNA-activated protein kinase, PKR. J Biol Chem 270(6):2601–2606

    Article  PubMed  CAS  Google Scholar 

  65. Patel RC, Stanton P, Sen GC (1996) Specific mutations near the amino terminus of double-stranded RNA-dependent protein kinase (PKR) differentially affect its double-stranded RNA binding and dimerization properties. J Biol Chem 271(41):25657–25663

    Article  PubMed  CAS  Google Scholar 

  66. Emmerth S, Schober H, Gaidatzis D, Roloff T, Jacobeit K, Bühler M (2010) Nuclear retention of fission yeast dicer is a prerequisite for RNAi-mediated heterochromatin assembly. Dev Cell 18(1):102–113

    Article  PubMed  CAS  Google Scholar 

  67. Woolcock KJ, Stunnenberg R, Gaidatzis D, Hotz HR, Emmerth S, Barraud P, Buhler M (2012) RNAi keeps Atf1-bound stress response genes in check at nuclear pores. Genes Dev 26(7):683–692

    Article  PubMed  CAS  Google Scholar 

  68. Brownawell AM, Macara IG (2002) Exportin-5, a novel karyopherin, mediates nuclear export of double-stranded RNA binding proteins. J Cell Biol 156(1):53–64

    Article  PubMed  CAS  Google Scholar 

  69. Strehblow A, Hallegger M, Jantsch MF (2002) Nucleocytoplasmic distribution of human RNA-editing enzyme ADAR1 is modulated by double-stranded RNA-binding domains, a leucine-rich export signal, and a putative dimerization domain. Mol Biol Cell 13(11):3822–3835

    Article  PubMed  CAS  Google Scholar 

  70. Gwizdek C, Ossareh-Nazari B, Brownawell AM, Evers S, Macara IG, Dargemont C (2004) Minihelix-containing RNAs mediate exportin-5-dependent nuclear export of the double-stranded RNA-binding protein ILF3. J Biol Chem 279(2):884–891

    Article  PubMed  CAS  Google Scholar 

  71. Macchi P, Brownawell AM, Grunewald B, DesGroseillers L, Macara IG, Kiebler MA (2004) The brain-specific double-stranded RNA-binding protein Staufen2: nucleolar accumulation and isoform-specific exportin-5-dependent export. J Biol Chem 279(30):31440–31444

    Article  PubMed  CAS  Google Scholar 

  72. Fritz J, Strehblow A, Taschner A, Schopoff S, Pasierbek P, Jantsch MF (2009) RNA-regulated interaction of transportin-1 and exportin-5 with the double-stranded RNA-binding domain regulates nucleocytoplasmic shuttling of ADAR1. Mol Cell Biol 29(6):1487–1497

    Article  PubMed  CAS  Google Scholar 

  73. Patel RC, Sen GC (1998) PACT, a protein activator of the interferon-induced protein kinase. PKR. EMBO J 17(15):4379–4390

    Article  CAS  Google Scholar 

  74. Schuldt AJ, Adams JH, Davidson CM, Micklem DR, Haseloff J, St Johnston D, Brand AH (1998) Miranda mediates asymmetric protein and RNA localization in the developing nervous system. Genes Dev 12(12):1847–1857

    Article  PubMed  CAS  Google Scholar 

  75. Micklem DR, Adams J, Grunert S, St Johnston D (2000) Distinct roles of two conserved Staufen domains in oskar mRNA localization and translation. EMBO J 19(6):1366–1377

    Article  PubMed  CAS  Google Scholar 

  76. Zhang F, Romano PR, Nagamura-Inoue T, Tian B, Dever TE, Mathews MB, Ozato K, Hinnebusch AG (2001) Binding of double-stranded RNA to protein kinase PKR is required for dimerization and promotes critical autophosphorylation events in the activation loop. J Biol Chem 276(27):24946–24958

    Article  PubMed  CAS  Google Scholar 

  77. Tremblay A, Lamontagne B, Catala M, Yam Y, Larose S, Good L, Elela SA (2002) A physical interaction between Gar1p and Rnt1pi is required for the nuclear import of H/ACA small nucleolar RNA-associated proteins. Mol Cell Biol 22(13):4792–4802

    Article  PubMed  CAS  Google Scholar 

  78. Gupta V, Huang X, Patel RC (2003) The carboxy-terminal, M3 motifs of PACT and TRBP have opposite effects on PKR activity. Virology 315(2):283–291

    Article  PubMed  CAS  Google Scholar 

  79. Hitti EG, Sallacz NB, Schoft VK, Jantsch MF (2004) Oligomerization activity of a double-stranded RNA-binding domain. FEBS Lett 574(1–3):25–30

    Article  PubMed  CAS  Google Scholar 

  80. Haase AD, Jaskiewicz L, Zhang H, Laine S, Sack R, Gatignol A, Filipowicz W (2005) TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep 6(10):961–967

    Article  PubMed  CAS  Google Scholar 

  81. Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436(7051):740–744

    Article  PubMed  CAS  Google Scholar 

  82. Dickerson RE, Drew HR, Conner BN, Wing RM, Fratini AV, Kopka ML (1982) The anatomy of A-, B-, and Z-DNA. Science 216(4545):475–485

    Article  PubMed  CAS  Google Scholar 

  83. Gredell JA, Dittmer MJ, Wu M, Chan C, Walton SP (2010) Recognition of siRNA asymmetry by TAR RNA binding protein. Biochemistry 49(14):3148–3155

    Article  PubMed  CAS  Google Scholar 

  84. Kurihara Y, Takashi Y, Watanabe Y (2006) The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 12(2):206–212

    Article  PubMed  CAS  Google Scholar 

  85. Bevilacqua PC, Cech TR (1996) Minor-groove recognition of double-stranded RNA by the double-stranded RNA-binding domain from the RNA-activated protein kinase PKR. Biochemistry 35(31):9983–9994

    Article  PubMed  CAS  Google Scholar 

  86. Woese CR, Winker S, Gutell RR (1990) Architecture of ribosomal RNA: constraints on the sequence of “tetra-loops”. Proc Natl Acad Sci USA 87(21):8467–8471

    Article  PubMed  CAS  Google Scholar 

  87. Varani G (1995) Exceptionally stable nucleic acid hairpins. Annu Rev Biophys Biomol Struct 24:379–404

    Article  PubMed  CAS  Google Scholar 

  88. Chanfreau G (2003) Conservation of RNase III processing pathways and specificity in hemiascomycetes. Eukaryot Cell 2(5):901–909

    Article  PubMed  CAS  Google Scholar 

  89. Chanfreau G, Buckle M, Jacquier A (2000) Recognition of a conserved class of RNA tetraloops by Saccharomyces cerevisiae RNase III. Proc Natl Acad Sci USA 97(7):3142–3147

    Article  PubMed  CAS  Google Scholar 

  90. Nagel R, Ares M Jr (2000) Substrate recognition by a eukaryotic RNase III: the double-stranded RNA-binding domain of Rnt1p selectively binds RNA containing a 5′-AGNN-3′ tetraloop. RNA 6(8):1142–1156

    Article  PubMed  CAS  Google Scholar 

  91. Wu H, Yang PK, Butcher SE, Kang S, Chanfreau G, Feigon J (2001) A novel family of RNA tetraloop structure forms the recognition site for Saccharomyces cerevisiae RNase III. EMBO J 20(24):7240–7249

    Article  PubMed  CAS  Google Scholar 

  92. Lebars I, Lamontagne B, Yoshizawa S, Aboul-Elela S, Fourmy D (2001) Solution structure of conserved AGNN tetraloops: insights into Rnt1p RNA processing. EMBO J 20(24):7250–7258

    Article  PubMed  CAS  Google Scholar 

  93. Macdonald PM, Struhl G (1988) Cis-acting sequences responsible for anterior localization of bicoid mRNA in Drosophila embryos. Nature 336(6199):595–598

    Article  PubMed  CAS  Google Scholar 

  94. Kim-Ha J, Webster PJ, Smith JL, Macdonald PM (1993) Multiple RNA regulatory elements mediate distinct steps in localization of oskar mRNA. Development 119(1):169–178

    PubMed  CAS  Google Scholar 

  95. Wagner C, Palacios I, Jaeger L, St Johnston D, Ehresmann B, Ehresmann C, Brunel C (2001) Dimerization of the 3′UTR of bicoid mRNA involves a two-step mechanism. J Mol Biol 313(3):511–524

    Article  PubMed  CAS  Google Scholar 

  96. Broadus J, Fuerstenberg S, Doe CQ (1998) Staufen-dependent localization of prospero mRNA contributes to neuroblast daughter-cell fate. Nature 391(6669):792–795

    Article  PubMed  CAS  Google Scholar 

  97. Doyle M, Kiebler MA (2011) Mechanisms of dendritic mRNA transport and its role in synaptic tagging. EMBO J 30(17):3540–3552

    Article  PubMed  CAS  Google Scholar 

  98. Higuchi M, Maas S, Single FN, Hartner J, Rozov A, Burnashev N, Feldmeyer D, Sprengel R, Seeburg PH (2000) Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406(6791):78–81

    Article  PubMed  CAS  Google Scholar 

  99. Walkley CR, Liddicoat B, Hartner JC (2012) Role of ADARs in mouse development. Curr Top Microbiol Immunol 353:197–220

    Article  PubMed  CAS  Google Scholar 

  100. Palladino MJ, Keegan LP, O’Connell MA, Reenan RA (2000) A-to-I pre-mRNA editing in Drosophila is primarily involved in adult nervous system function and integrity. Cell 102(4):437–449

    Article  PubMed  CAS  Google Scholar 

  101. Keegan LP, Brindle J, Gallo A, Leroy A, Reenan RA, O’Connell MA (2005) Tuning of RNA editing by ADAR is required in Drosophila. EMBO J 24(12):2183–2193

    Article  PubMed  CAS  Google Scholar 

  102. Paro S, Li X, O’Connell MA, Keegan LP (2012) Regulation and functions of ADAR in drosophila. Curr Top Microbiol Immunol 353:221–236

    Article  PubMed  CAS  Google Scholar 

  103. Nicholson AW (2011) Ribonuclease III and the role of double-stranded RNA processing in bacterial systems. Nucl Acids Mol Biol 26:269–297. doi:10.1007/978-3-642-21078-5_11

  104. Lamontagne B, Larose S, Boulanger J, Elela SA (2001) The RNase III family: a conserved structure and expanding functions in eukaryotic dsRNA metabolism. Curr Issues Mol Biol 3(4):71–78

    PubMed  CAS  Google Scholar 

  105. Draper DE (1995) Protein-RNA recognition. Annu Rev Biochem 64:593–620

    Article  PubMed  CAS  Google Scholar 

  106. Draper DE (1999) Themes in RNA-protein recognition. J Mol Biol 293(2):255–270

    Article  PubMed  CAS  Google Scholar 

  107. Gaudin C, Ghazal G, Yoshizawa S, Elela SA, Fourmy D (2006) Structure of an AAGU tetraloop and its contribution to substrate selection by yeast RNase III. J Mol Biol 363(2):322–331

    Article  PubMed  CAS  Google Scholar 

  108. Ghazal G, Elela SA (2006) Characterization of the reactivity determinants of a novel hairpin substrate of yeast RNase III. J Mol Biol 363(2):332–344

    Article  PubMed  CAS  Google Scholar 

  109. Zhang K, Nicholson AW (1997) Regulation of ribonuclease III processing by double-helical sequence antideterminants. Proc Natl Acad Sci USA 94(25):13437–13441

    Article  PubMed  CAS  Google Scholar 

  110. Pertzev AV, Nicholson AW (2006) Characterization of RNA sequence determinants and antideterminants of processing reactivity for a minimal substrate of Escherichia coli ribonuclease III. Nucleic Acids Res 34(13):3708–3721

    Article  PubMed  CAS  Google Scholar 

  111. Nathania L, Nicholson AW (2010) Thermotoga maritima ribonuclease III. Characterization of thermostable biochemical behavior and analysis of conserved base pairs that function as reactivity epitopes for the Thermotoga 23S rRNA precursor. Biochemistry 49(33):7164–7178

    Article  PubMed  CAS  Google Scholar 

  112. Shi Z, Nicholson RH, Jaggi R, Nicholson AW (2011) Characterization of Aquifex aeolicus ribonuclease III and the reactivity epitopes of its pre-ribosomal RNA substrates. Nucleic Acids Res 39(7):2756–2768

    Article  PubMed  CAS  Google Scholar 

  113. Keegan LP, McGurk L, Palavicini JP, Brindle J, Paro S, Li X, Rosenthal JJ, O’Connell MA (2011) Functional conservation in human and Drosophila of Metazoan ADAR2 involved in RNA editing: loss of ADAR1 in insects. Nucleic Acids Res 39(16):7249–7262

    Article  PubMed  CAS  Google Scholar 

  114. Graveley BR, Brooks AN, Carlson J, Duff MO, Landolin JM, Yang L, Artieri CG, van Baren MJ, Boley N, Booth BW et al (2011) The developmental transcriptome of Drosophila melanogaster. Nature 471(7339):473–479

    Article  PubMed  CAS  Google Scholar 

  115. Bass BL (2002) RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem 71:817–846

    Article  PubMed  CAS  Google Scholar 

  116. Lehmann KA, Bass BL (2000) Double-stranded RNA adenosine deaminases ADAR1 and ADAR2 have overlapping specificities. Biochemistry 39(42):12875–12884

    Article  PubMed  CAS  Google Scholar 

  117. Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16(22):10881–10890

    Article  PubMed  CAS  Google Scholar 

  118. Combet C, Blanchet C, Geourjon C, Deléage G (2000) NPS@: network protein sequence analysis. Trends Biochem Sci 25(3):147–150

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We sincerely apologize to the colleagues whose important work is not cited because of space limitation, or unfortunately because of our negligence. This work was supported by the Swiss National Science Foundation Nr. 31003AB-133134 and 310030E-131031, the SNF-NCCR structural biology and a KTI Grant 11329.1 PFLS-LS. G.M. was supported by grant from the “Fondation pour la Recherche Médicale”. P.B. was supported by the Postdoctoral ETH Fellowship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric H. -T. Allain.

Additional information

G. Masliah and P. Barraud contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masliah, G., Barraud, P. & Allain, F.H.T. RNA recognition by double-stranded RNA binding domains: a matter of shape and sequence. Cell. Mol. Life Sci. 70, 1875–1895 (2013). https://doi.org/10.1007/s00018-012-1119-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1119-x

Keywords

Navigation