Skip to main content
Log in

Tetraspanin15 regulates cellular trafficking and activity of the ectodomain sheddase ADAM10

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

A disintegrin and metalloproteinase10 (ADAM10) has been implicated as a major sheddase responsible for the ectodomain shedding of a number of important surface molecules including the amyloid precursor protein and cadherins. Despite a well-documented role of ADAM10 in health and disease, little is known about the regulation of this protease. To address this issue we conducted a split-ubiquitin yeast two-hybrid screen to identify membrane proteins that interact with ADAM10. The yeast experiments and co-immunoprecipitation studies in mammalian cell lines revealed tetraspanin15 (TSPAN15) to specifically associate with ADAM10. Overexpression of TSPAN15 or RNAi-mediated knockdown of TSPAN15 led to significant changes in the maturation process and surface expression of ADAM10. Expression of an endoplasmic reticulum (ER) retention mutant of TSPAN15 demonstrated an interaction with ADAM10 already in the ER. Pulse-chase experiments confirmed that TSPAN15 accelerates the ER-exit of the ADAM10–TSPAN15 complex and stabilizes the active form of ADAM10 at the cell surface. Importantly, TSPAN15 also showed the ability to mediate the regulation of ADAM10 protease activity exemplified by an increased shedding of N-cadherin and the amyloid precursor protein. In conclusion, our data show that TSPAN15 is a central modulator of ADAM10-mediated ectodomain shedding. Therapeutic manipulation of its expression levels may be an additional approach to specifically regulate the activity of the amyloid precursor protein alpha-secretase ADAM10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Reiss K, Saftig P (2009) The “a disintegrin and metalloprotease” (ADAM) family of sheddases: physiological and cellular functions. Semin Cell Dev Biol 20(2):126–137

    Article  PubMed  CAS  Google Scholar 

  2. Saftig P, Reiss K (2011) The “A disintegrin and metalloproteases” ADAM10 and ADAM17: novel drug targets with therapeutic potential? Eur J Cell Biol 90(6–7):527–535

    Article  PubMed  CAS  Google Scholar 

  3. Lopez-Perez E, Zhang Y, Frank SJ, Creemers J, Seidah N, Checler F (2001) Constitutive alpha-secretase cleavage of the beta-amyloid precursor protein in the furin-deficient LoVo cell line: involvement of the pro-hormone convertase 7 and the disintegrin metalloprotease ADAM10. J Neurochem 76(5):1532–1539

    Article  PubMed  CAS  Google Scholar 

  4. Lopez-Perez E, Seidah NG, Checler F (1999) Proprotein convertase activity contributes to the processing of the Alzheimer’s beta-amyloid precursor protein in human cells: evidence for a role of the prohormone convertase PC7 in the constitutive alpha-secretase pathway. J Neurochem 73(5):2056–2062

    PubMed  CAS  Google Scholar 

  5. Anders A, Gilbert S, Garten W, Postina R, Fahrenholz F (2001) Regulation of the alpha-secretase ADAM10 by its prodomain and proprotein convertases. FASEB J 15(10):1837–1839

    PubMed  CAS  Google Scholar 

  6. Lin J, Luo J, Redies C (2008) Differential expression of five members of the ADAM family in the developing chicken brain. Neuroscience 157(2):360–375

    Article  PubMed  CAS  Google Scholar 

  7. Hattori M, Osterfield M, Flanagan JG (2000) Regulated cleavage of a contact-mediated axon repellent. Science 289(5483):1360–1365

    Article  PubMed  CAS  Google Scholar 

  8. Janes PW, Saha N, Barton WA, Kolev MV, Wimmer-Kleikamp SH, Nievergall E, Blobel CP, Himanen JP, Lackmann M, Nikolov DB (2005) Adam meets Eph: an ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell 123(2):291–304

    Article  PubMed  CAS  Google Scholar 

  9. Vincent B (2004) ADAM proteases: protective role in Alzheimer’s and prion diseases? Curr Alzheimer Res 1(3):165–174

    Article  PubMed  CAS  Google Scholar 

  10. Altmeppen HC, Prox J, Puig B, Kluth MA, Bernreuther C, Thurm D, Jorissen E, Petrowitz B, Bartsch U, De Strooper B, Saftig P, Glatzel M (2011) Lack of a-disintegrin-and-metalloproteinase ADAM10 leads to intracellular accumulation and loss of shedding of the cellular prion protein in vivo. Mol Neurodegener 6:36

    Article  PubMed  CAS  Google Scholar 

  11. Hinkle CL, Diestel S, Lieberman J, Maness PF (2006) Metalloprotease-induced ectodomain shedding of neural cell adhesion molecule (NCAM). J Neurobiol 66(12):1378–1395

    Article  PubMed  CAS  Google Scholar 

  12. Gutwein P, Mechtersheimer S, Riedle S, Stoeck A, Gast D, Joumaa S, Zentgraf H, Fogel M, Altevogt DP (2003) ADAM10-mediated cleavage of L1 adhesion molecule at the cell surface and in released membrane vesicles. FASEB J 17(2):292–294

    PubMed  CAS  Google Scholar 

  13. Reiss K, Maretzky T, Ludwig A, Tousseyn T, de Strooper B, Hartmann D, Saftig P (2005) ADAM10 cleavage of N-cadherin and regulation of cell–cell adhesion and beta-catenin nuclear signalling. EMBO J 24(4):742–752

    Article  PubMed  CAS  Google Scholar 

  14. Postina R, Schroeder A, Dewachter I, Bohl J, Schmitt U, Kojro E, Prinzen C, Endres K, Hiemke C, Blessing M, Flamez P, Dequenne A, Godaux E, van Leuven F, Fahrenholz F (2004) A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J Clin Invest 113(10):1456–1464

    PubMed  CAS  Google Scholar 

  15. Hooper NM, Turner AJ (2002) The search for alpha-secretase and its potential as a therapeutic approach to Alzheimer s disease. Curr Med Chem 9(11):1107–1119

    PubMed  CAS  Google Scholar 

  16. Asai M, Hattori C, Szabo B, Sasagawa N, Maruyama K, Tanuma S, Ishiura S (2003) Putative function of ADAM9, ADAM10, and ADAM17 as APP alpha-secretase. Biochem Biophys Res Commun 301(1):231–235

    Article  PubMed  CAS  Google Scholar 

  17. Hartmann D, de Strooper B, Serneels L, Craessaerts K, Herreman A, Annaert W, Umans L, Lubke T (2002) Lena Illert A, von Figura K, Saftig P. The disintegrin/metalloprotease ADAM 10 is essential for notch signalling but not for alpha-secretase activity in fibroblasts. Hum Mol Genet 11(21):2615–2624

    Article  PubMed  CAS  Google Scholar 

  18. Jorissen E, Prox J, Bernreuther C, Weber S, Schwanbeck R, Serneels L, Snellinx A, Craessaerts K, Thathiah A, Tesseur I, Bartsch U, Weskamp G, Blobel CP, Glatzel M, De Strooper B, Saftig P (2010) The disintegrin/metalloproteinase ADAM10 is essential for the establishment of the brain cortex. J Neurosci 30(14):4833–4844

    Article  PubMed  CAS  Google Scholar 

  19. Kopan R, Ilagan MX (2009) The canonical notch signaling pathway: unfolding the activation mechanism. Cell 137(2):216–233

    Article  PubMed  CAS  Google Scholar 

  20. Holback S, Adlerz L, Iverfeldt K (2005) Increased processing of APLP2 and APP with concomitant formation of APP intracellular domains in BDNF and retinoic acid-differentiated human neuroblastoma cells. J Neurochem 95(4):1059–1068

    Article  PubMed  CAS  Google Scholar 

  21. Prinzen C, Muller U, Endres K, Fahrenholz F, Postina R (2005) Genomic structure and functional characterization of the human ADAM10 promoter. FASEB J 19(11):1522–1524

    PubMed  CAS  Google Scholar 

  22. Tippmann F, Hundt J, Schneider A, Endres K, Fahrenholz F (2009) Up-regulation of the alpha-secretase ADAM10 by retinoic acid receptors and acitretin. FASEB J 23(6):1643–1654

    Article  PubMed  CAS  Google Scholar 

  23. Xu D, Sharma C, Hemler ME (2009) Tetraspanin12 regulates ADAM10-dependent cleavage of amyloid precursor protein. FASEB J 23(11):3674–3681

    Article  PubMed  CAS  Google Scholar 

  24. Arduise C, Abache T, Li L, Billard M, Chabanon A, Ludwig A, Mauduit P, Boucheix C, Rubinstein E, Le Naour F (2008) Tetraspanins regulate ADAM10-mediated cleavage of TNF-alpha and epidermal growth factor. J Immunol 181(10):7002–7013

    PubMed  CAS  Google Scholar 

  25. Berditchevski F, Odintsova E (2007) Tetraspanins as regulators of protein trafficking. Traffic 8(2):89–96

    Article  PubMed  CAS  Google Scholar 

  26. Stipp CS, Kolesnikova TV, Hemler ME (2003) Functional domains in tetraspanin proteins. Trends Biochem Sci 28(2):106–112

    Article  PubMed  CAS  Google Scholar 

  27. Levy S, Shoham T (2005) Protein-protein interactions in the tetraspanin web. Physiology (Bethesda) 20:218–224

    Article  CAS  Google Scholar 

  28. Hemler ME (2001) Specific tetraspanin functions. J Cell Biol 155(7):1103–1107

    Article  PubMed  CAS  Google Scholar 

  29. Maecker HT, Todd SC, Levy S (1997) The tetraspanin superfamily: molecular facilitators. FASEB J 11(6):428–442

    PubMed  CAS  Google Scholar 

  30. Hemler ME (2005) Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol 6(10):801–811

    Article  PubMed  CAS  Google Scholar 

  31. Yunta M, Lazo PA (2003) Tetraspanin proteins as organisers of membrane microdomains and signalling complexes. Cell Signal 15(6):559–564

    Article  PubMed  CAS  Google Scholar 

  32. Wakabayashi T, Craessaerts K, Bammens L, Bentahir M, Borgions F, Herdewijn P, Staes A, Timmerman E, Vandekerckhove J, Rubinstein E, Boucheix C, Gevaert K, De Strooper B (2009) Analysis of the gamma-secretase interactome and validation of its association with tetraspanin-enriched microdomains. Nat Cell Biol 11(11):1340–1346

    Article  PubMed  CAS  Google Scholar 

  33. Yanez-Mo M, Gutierrez-Lopez MD, Cabanas C (2011) Functional interplay between tetraspanins and proteases. Cell Mol Life Sci 68(20):3323–3335

    Article  PubMed  CAS  Google Scholar 

  34. Gunther W, Luchow A, Cluzeaud F, Vandewalle A, Jentsch TJ (1998) ClC-5, the chloride channel mutated in Dent’s disease, colocalizes with the proton pump in endocytotically active kidney cells. Proc Natl Acad Sci USA 95(14):8075–8080

    Article  PubMed  CAS  Google Scholar 

  35. Blanz J, Groth J, Zachos C, Wehling C, Saftig P, Schwake M (2010) Disease-causing mutations within the lysosomal integral membrane protein type 2 (LIMP-2) reveal the nature of binding to its ligand beta-glucocerebrosidase. Hum Mol Genet 19(4):563–572

    Article  PubMed  CAS  Google Scholar 

  36. Reczek D, Schwake M, Schroder J, Hughes H, Blanz J, Jin X, Brondyk W, Van Patten S, Edmunds T, Saftig P (2007) LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of beta-glucocerebrosidase. Cell 131(4):770–783

    Article  PubMed  CAS  Google Scholar 

  37. Behnke J, Eskelinen EL, Saftig P, Schroder B (2011) Two dileucine motifs mediate late endosomal/lysosomal targeting of transmembrane protein 192 (TMEM192) and a C-terminal cysteine residue is responsible for disulfide bond formation in TMEM192 homodimers. Biochem J 434(2):219–231

    Article  PubMed  CAS  Google Scholar 

  38. Wang B, Pelletier J, Massaad MJ, Herscovics A, Shore GC (2004) The yeast split-ubiquitin membrane protein two-hybrid screen identifies BAP31 as a regulator of the turnover of endoplasmic reticulum-associated protein tyrosine phosphatase-like B. Mol Cell Biol 24(7):2767–2778

    Article  PubMed  CAS  Google Scholar 

  39. Tousseyn T, Thathiah A, Jorissen E, Raemaekers T, Konietzko U, Reiss K, Maes E, Snellinx A, Serneels L, Nyabi O, Annaert W, Saftig P, Hartmann D, De Strooper B (2009) ADAM10, the rate-limiting protease of regulated intramembrane proteolysis of Notch and other proteins, is processed by ADAMS-9, ADAMS-15, and the gamma-secretase. J Biol Chem 284(17):11738–11747

    Article  PubMed  CAS  Google Scholar 

  40. Weber S, Niessen MT, Prox J, Lullmann-Rauch R, Schmitz A, Schwanbeck R, Blobel CP, Jorissen E, de Strooper B, Niessen CM, Saftig P (2011) The disintegrin/metalloproteinase Adam10 is essential for epidermal integrity and notch-mediated signaling. Development 138(3):495–505

    Article  PubMed  CAS  Google Scholar 

  41. Tian L, Wu X, Chi C, Han M, Xu T, Zhuang Y (2008) ADAM10 is essential for proteolytic activation of notch during thymocyte development. Int Immunol 20(9):1181–1187

    Article  PubMed  CAS  Google Scholar 

  42. Endres K, Fahrenholz F (2010) Upregulation of the alpha-secretase ADAM10–risk or reason for hope? FEBS J 277(7):1585–1596

    Article  PubMed  CAS  Google Scholar 

  43. Grupe A, Li Y, Rowland C, Nowotny P, Hinrichs AL, Smemo S, Kauwe JS, Maxwell TJ, Cherny S, Doil L, Tacey K, van Luchene R, Myers A, Wavrant-De Vrieze F, Kaleem M, Hollingworth P, Jehu L, Foy C, Archer N, Hamilton G, Holmans P, Morris CM, Catanese J, Sninsky J, White TJ, Powell J, Hardy J, O’Donovan M, Lovestone S, Jones L, Morris JC, Thal L, Owen M, Williams J, Goate A (2006) A scan of chromosome 10 identifies a novel locus showing strong association with late-onset Alzheimer disease. Am J Hum Genet 78(1):78–88

    Article  PubMed  CAS  Google Scholar 

  44. Le Naour F, Andre M, Greco C, Billard M, Sordat B, Emile JF, Lanza F, Boucheix C, Rubinstein E (2006) Profiling of the tetraspanin web of human colon cancer cells. Mol Cell Proteomics 5(5):845–857

    Article  PubMed  Google Scholar 

  45. Lammich S, Kojro E, Postina R, Gilbert S, Pfeiffer R, Jasionowski M, Haass C, Fahrenholz F (1999) Constitutive and regulated alpha-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc Natl Acad Sci USA 96(7):3922–3927

    Article  PubMed  CAS  Google Scholar 

  46. Marcello E, Gardoni F, Mauceri D, Romorini S, Jeromin A, Epis R, Borroni B, Cattabeni F, Sala C, Padovani A, Di Luca M (2007) Synapse-associated protein-97 mediates alpha-secretase ADAM10 trafficking and promotes its activity. J Neurosci 27(7):1682–1691

    Article  PubMed  CAS  Google Scholar 

  47. Marcello E, Gardoni F, Di Luca M, Perez-Otano I (2010) An arginine stretch limits ADAM10 exit from the endoplasmic reticulum. J Biol Chem 285(14):10376–10384

    Article  PubMed  CAS  Google Scholar 

  48. Duffy MJ, McKiernan E, O’Donovan N, McGowan PM (2009) The role of ADAMs in disease pathophysiology. Clin Chim Acta 403(1–2):31–36

    Article  PubMed  CAS  Google Scholar 

  49. Armanious H, Gelebart P, Anand M, Belch A, Lai R (2011) Constitutive activation of metalloproteinase ADAM10 in mantle cell lymphoma promotes cell growth and activates the TNF{alpha}/NF{kappa}B pathway. Blood 117(23):6237–6246

    Article  PubMed  CAS  Google Scholar 

  50. Suter B, Auerbach D, Stagljar I (2006) Yeast-based functional genomics and proteomics technologies: the first 15 years and beyond. Biotechniques 40(5):625–644

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft Sonderforschungsbereich 877 A3 (P.S.) and B8 (M.S.) and GRK1459. We are also grateful to Wim Annaert for providing us with the B42.1/B63.3 anti-mouse ADAM10 or APP antibody, and Eric Rubinstein for the human TSPAN15 expression construct.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paul Saftig or Michael Schwake.

Additional information

J. Prox, M. Willenbrock, P. Saftig and M. Schwake contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 97 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prox, J., Willenbrock, M., Weber, S. et al. Tetraspanin15 regulates cellular trafficking and activity of the ectodomain sheddase ADAM10. Cell. Mol. Life Sci. 69, 2919–2932 (2012). https://doi.org/10.1007/s00018-012-0960-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-0960-2

Keywords

Navigation