Skip to main content
Log in

Molecular enigma of multicolor bioluminescence of firefly luciferase

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Firefly luciferase-catalyzed reaction proceeds via the initial formation of an enzyme-bound luciferyl adenylate intermediate. The chemical origin of the color modulation in firefly bioluminescence has not been understood until recently. The presence of the same luciferin molecule, in combination with various mutated forms of luciferase, can emit light at slightly different wavelengths, ranging from red to yellow to green. A historical perspective of development in understanding of color emission mechanism is presented. To explain the variation in the color of the bioluminescence, different factors have been discussed and five hypotheses proposed for firefly bioluminescence color. On the basis of recent results, light-color modulation mechanism of firefly luciferase propose that the light emitter is the excited singlet state of OL [1(OL)*], and light emission from 1(OL)* is modulated by the polarity of the active-site environment at the phenol/phenolate terminal of the benzothiazole fragment in oxyluciferin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Harvey EN (1952) Bioluminescence. Academic, New York

    Google Scholar 

  2. Haneda Y, Johnson FH (eds) (1966) Bioluminescence in progress. Princeton University Press, New Jersey

    Google Scholar 

  3. Herring PJ (ed) (1978) Bioluminescence in action. Academic, New York

    Google Scholar 

  4. Campbell AK (1988) Chemiluminescence: principle and applications in biology and medicine. VCH, New York

    Google Scholar 

  5. Shimomura O (2006) Bioluminescence: chemical principles and methods. World Scientific, Singapore

    Book  Google Scholar 

  6. Shimomura O (1985) Bioluminescence in the sea: photoprotein systems. Soc Exp Biol Symp 39:351–372

    CAS  Google Scholar 

  7. Hastings JW, Morin JG (1991) Bioluminescence. In: Prosser CL (ed) Neural and integrative animal physiology. Wiley, New York, pp 131–170

    Google Scholar 

  8. Meighen EA, Dunlap PV (1993) Physiological, biochemical and genetic control of bacterial bioluminescence. Adv Microbial Physiol 34:1–67

    Article  CAS  Google Scholar 

  9. Wilson T, Hastings JW (1998) Bioluminescence. Annu Rev Cell Dev Biol 14:197–230

    Article  PubMed  CAS  Google Scholar 

  10. Bronstein I, Fortin J, Stanley PE, Stewart GS, Kricka LJ (1994) Chemiluminescent and bioluminescent reporter gene assays. Anal Biochem 219:169–181

    Article  PubMed  CAS  Google Scholar 

  11. Greer LF 3rd, Szalay AA (2002) Imaging of light emission from the expression of luciferases in living cells and organisms: a review. Luminescence 17:43–73

    Article  PubMed  CAS  Google Scholar 

  12. Lloyd JE (1983) Bioluminescence and communication in insects. Annu Rev Entomol 28:131–160

    Article  Google Scholar 

  13. Wood KV (1995) The chemical mechanism and evolutionary development of beetle bioluminescence. Photochem Photobiol 62:662–673

    Article  CAS  Google Scholar 

  14. Viviani VR (2002) The origin, diversity, and structure function relationships of insect luciferases. Cell Mol Life Sci 59:1833–1850

    Article  PubMed  CAS  Google Scholar 

  15. White EH, Rapaport E, Seliger HH, Hopkins TA (1971) The chemi- and bioluminescence of firefly luciferin: an efficient chemical production of electronically excited states. Bioorg Chem 1:92–122

    Article  CAS  Google Scholar 

  16. DeLuca M (1976) Firefly luciferase. Adv Enzymol Relat Areas Mol Biol 44:37–68

    PubMed  CAS  Google Scholar 

  17. McElroy WD (1947) The energy source for bioluminescence in an isolated system. Proc Natl Acad Sci USA 33:342–345

    Article  PubMed  CAS  Google Scholar 

  18. Seliger HH, McElroy WD (1959) Quantum yield in the oxidation of firefly luciferin. Biochem Biophys Res Commun 1:21–24

    Article  CAS  Google Scholar 

  19. Seliger HH, McElroy WD (1960) Spectral emission and quantum yield of firefly bioluminescence. Arch Biochem Biophys 88:136–141

    Article  PubMed  CAS  Google Scholar 

  20. Wood KV, Lam YA, Seliger HH, McElroy WD (1989) Complementary DNA coding click beetle luciferases can elicit bioluminescence of different colors. Science 244:700–703

    Article  PubMed  CAS  Google Scholar 

  21. de Wet JR, Wood KV, Helinski DR, DeLuca M (1986) Cloning firefly luciferase. Methods Enzymol 133:3–14

    Article  PubMed  Google Scholar 

  22. DeLuca M, McElroy WD (1978) Purification and properties of firefly luciferase. Methods Enzymol 57:3–15

    Article  CAS  Google Scholar 

  23. de Wet JR, Wood KV, Helinski DR, DeLuca M (1985) Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proc Natl Acad Sci USA 82:7870–7873

    Article  PubMed  Google Scholar 

  24. Greer LF, Szalay AA (2002) Imaging of light emission from the expression of luciferases in living cells and organisms: a review. Luminescence 17:43–74

    Article  PubMed  CAS  Google Scholar 

  25. Contag CH, Bachmann MH (2002) Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 4:235–260

    Article  PubMed  CAS  Google Scholar 

  26. Ando Y, Niwa K, Yamada N, Irie T, Enomoto T, Kubota H, Ohmiya Y, Akiyama H (2007) Development of a quantitative bio/chemiluminescence spectrometer determining quantum yields: re-examination of the aqueous luminol chemiluminescence standard. Photochem Photobiol 83:1205–1210

    Article  PubMed  CAS  Google Scholar 

  27. Conti E, Franks NP, Brick P (1996) Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes. Structure 4:287–298

    Article  PubMed  CAS  Google Scholar 

  28. Nakatsu T, Ichiyama S, Hiratake J, Saldanha A, Kobashi N, Sakata K, Kato H (2006) Structural basis for the spectral difference in luciferase bioluminescence. Nature 440:372–376

    Article  PubMed  CAS  Google Scholar 

  29. Gomi K, Kajiyama N (2001) Oxyluciferin, a luminescence product of firefly luciferase, is enzymatically regenerated into luciferin. J Biol Chem 276:36508–36513

    Article  PubMed  CAS  Google Scholar 

  30. Emamzadeh R, Hosseinkhani S, Hemati R, Sadeghizadeh M (2010) RACE-based amplification of cDNA and expression of a luciferin-regenerating enzyme (LRE): An attempt towards persistent bioluminescent signal. Enzyme Microb Technol 47:159–165

    Article  CAS  Google Scholar 

  31. Doyle TC, Burns SM, Contag CH (2004) In vivo bioluminescence imaging for integrated studies of infection. Cell Microbiol 6:303–317

    Article  PubMed  CAS  Google Scholar 

  32. Roda A, Pasini P, Mirasoli M, Michelini E, Guardigli M (2004) Biotechnological application of bioluminescence and chemiluminescence. Trends Biotechnol 22:295–303

    Article  PubMed  CAS  Google Scholar 

  33. Branchini BR, Southworth TR, Khattak NF, Michelini E, Roda A (2005) Red and green emitting firefly luciferase mutants for bioluminescent reporter application. Anal Biochem 345:140–148

    Article  PubMed  CAS  Google Scholar 

  34. Fan F, Wood KV (2007) Bioluminescent assays for high-throughput screening. Assay Drug Dev Technol 5:127–136

    Article  PubMed  CAS  Google Scholar 

  35. Billard P, DuBow MS (1998) Bioluminescence-based assay for detection and characterization of bacteria and chemicals in clinical laboratories. Clin Biochem 31:1–14

    Article  PubMed  CAS  Google Scholar 

  36. Bitton G, Koopman B (1992) Bacterial and enzymatic bioassays for toxicity testing in the environment. Rev Environ Contam Toxicol 125:1–22

    PubMed  CAS  Google Scholar 

  37. Cheong WF, Prahl SA, Welch AJ (1990) A review of the optical properties of biological tissues. IEEE J Quantum Electron 26:2166–2185

    Article  Google Scholar 

  38. Rice BW, Cable MD, Nelson MB (2001) In vivo imaging of light-emitting probes. J Biomed Opt 6:432–440

    Article  PubMed  CAS  Google Scholar 

  39. Tromberg BJ, Shah N, Lanning R, Cerussi A, Espinoza J, Pham T, Svaasand L, Butler J (2000) Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy. Neoplasia 2:26–40

    Article  PubMed  CAS  Google Scholar 

  40. Shapiro E, Lu C, Baneyx F (2005) A set of multicolored Photinus pyralis luciferase mutants for in vivo bioluminescence applications. Protein Eng Des Sel 18:581–587

    Article  PubMed  CAS  Google Scholar 

  41. Seliger HH, Buck JB, Fastie WG, McElroy WD (1964) The spectral distribution of firefly light. J Gen Physiol 48:95–104

    Article  PubMed  CAS  Google Scholar 

  42. Biggley WH, Lioyd JE, Seliger HH (1967) The spectral distribution of firefly light II. J Gen Physiol 50:1681–1692

    Article  PubMed  CAS  Google Scholar 

  43. Colepicolo NP, Costa C, Bechara EJH (1986) Brazilian species of luminescent Elateridae: Luciferin identification and bioluminescence spectra. Insect Biochem 16:803–810

    Article  Google Scholar 

  44. Viviani VR, Bechara EJH (1993) Biophysical and biochemical aspects of Phengodid (Railroad-Worm) bioluminescence. Photochem Photobiol 58:615–622

    Article  CAS  Google Scholar 

  45. Viviani VR, Bechara EJH (1997) Bioluminescence and biological aspects of Brazilian railroad-worms (Coleoptera: Phengodidae). Ann Entomol Soc Am 90:389–398

    Google Scholar 

  46. Ugarova NN, Brovko LY (2001) Relationship between the structure of the protein globule and bioluminescence spectra of firefly luciferase. Russ Chem Bull 50:1752–1761

    Article  CAS  Google Scholar 

  47. Viviani VR, Bechara EJH (1995) Bioluminescence of Brazilian fireflies (Coleoptera, Lampyridae): spectral distribution and pH effect on Luciferase-elicited colors. Comparison with Elaterid and Phengodid Luciferases. Photochem Photobiol 62:490–495

    Article  CAS  Google Scholar 

  48. Seliger HH, McElroy WD (1964) The colors of firefly bioluminescence: enzyme configuration and species specificity. Proc Natl Acad Sci USA 52:75–81

    Article  PubMed  CAS  Google Scholar 

  49. Viviani V, Uchida A, Suenaga N, Ryufuku M, Ohmiya Y (2001) Thr226 is a key residue for bioluminescence spectra determination in beetle luciferases. Biochem Biophys Res Commun 280:1286–1291

    Article  PubMed  CAS  Google Scholar 

  50. Wood KV (1990) Luc genes: introduction of color into bioluminescence assays. J Biolumin Chemilum 5:107–110

    Article  CAS  Google Scholar 

  51. Ohmiya Y, Hirano T, Ohashi M (1996) The structural origin of the color differences in the bioluminescence of firefly luciferase. FEBS Lett 384:83–86

    Article  PubMed  CAS  Google Scholar 

  52. Viviani VR, Joaquim da silva Neto A, Ohmiya Y (2004) The influence of the region between residues 220 and 344 and beyond in Phrixotrix railroad worm luciferases green and red bioluminescence. Protein Eng Des Sel 17:113–117

    Article  PubMed  CAS  Google Scholar 

  53. Viviani VR, Uchida A, Viviani W, Ohimiya Y (2002) The influence of Ala243 (Gly247), Arg215 and Thr226 (Asn230) on the bioluminescence spectra and pH-sensitivity of railroad worm, click beetle and firefly luciferases. Photochem Photobiol 76:538–544

    Article  PubMed  CAS  Google Scholar 

  54. Kajiyama N, Nakano E (1991) Isolation and characterization of mutants of firefly luciferase which produce different colors of light. Protein Eng 4:691–693

    Article  PubMed  CAS  Google Scholar 

  55. Mamaev SV, Laikhter AL, Arslan T, Hecht SM (1996) Firefly luciferase: alteration of the color of emitted light resulting from substitutions at position 286. J Am Chem Soc 118:7243–7244

    Article  CAS  Google Scholar 

  56. White EH, Roswell DF (1991) Analogs and derivatives of firefly oxyluciferin, the light emitter in firefly bioluminescence. Photochem Photobiol 53:131–136

    Article  PubMed  CAS  Google Scholar 

  57. Suzuki N, Sato M, Nishikawa K, Goto T (1969) Firefly bioluminescence II. Identification of a 2-(6-hydroxybenzothiazol-2′-YL-)-4-hydroxybenzothiazole as a product in the firefly lanterns and as a product in the chemiluminescence of firefly luciferin in DMSO. Tetrahedron Lett 10:4683–4684

    Article  Google Scholar 

  58. Suzuki N, Sato M, Okada K, Goto T (1972) Studies on firefly bioluminescence-I: Synthesis and spectral properties of firefly oxyluciferin, a possible emitting species in firefly bioluminescence. Tetrahedron 28:4065–4074

    Article  CAS  Google Scholar 

  59. Gandelman OA, Brovko LY, Ugarova NN, Shchegolev AA (1990) The bioluminescence system of firefly A fluorescence spectroscopy study of the interaction of the reaction product, oxyluciferin, and its analogs with luciferase. Biochemistry (Moscow) 55:785–789

    Google Scholar 

  60. Gandelman OA, Brovko LY, Ugarova NN, Chikishev AY, Shkurimov APJ (1993) Oxyluciferin fluorescence is a model of native bioluminescence in the firefly luciferin-luciferase system. Photochem Photobiol B 19:187–191

    Article  CAS  Google Scholar 

  61. Alipour BS, Hosseinkhani S, Nikkhah M, Naderi-Manesh H, Chaichi MJ, Osaloo SK (2004) Molecular cloning, sequence analysis, and expression of a cDNA encoding the luciferase from the glow-worm, Lampyris turkestanicus. Biochem Biophys Res Commun 325:215–222

    Article  PubMed  CAS  Google Scholar 

  62. Tafreshi NK, Sadeghizadeh M, Emamzadeh R, Ranjbar B, Naderi-Manesh H, Hosseinkhani S (2008) Site-directed mutagenesis of firefly luciferase: implication of conserved residue(s) in bioluminescence emission spectra among firefly luciferases. Biochem J 412:27–33

    Article  PubMed  CAS  Google Scholar 

  63. Caysa H, Jacob R, Müther N, Branchini B, Messerle M, Söling A (2009) A red shifted codon-optimized firefly luciferase is a sensitive reporter for bioluminescence imaging. Photochem Photobiol Sci 8:52–56

    Article  PubMed  CAS  Google Scholar 

  64. Baldwin TO (1996) Firefly luciferase: the structure is known, but the mystery remains. Structure 4:223–228

    Article  PubMed  CAS  Google Scholar 

  65. DeLuca M (1969) Hydrophobic nature of the active site of firefly luciferase. Biochemistry 8:160–166

    Article  PubMed  CAS  Google Scholar 

  66. Morton RA, Hopkins TA, Seliger HH (1969) The spectroscopic properties of firefly luciferin and related compounds. An approach to product emission. Biochemistry 8:1598–1607

    Article  PubMed  CAS  Google Scholar 

  67. Liu YJ, De Vico L, Lindh R (2008) Ab initio investigation on the chemical origin of the firefly bioluminescence. Photochem Photobiol A 194:261–267

    Article  CAS  Google Scholar 

  68. Hirano T, Hasumi Y, Ohtsuka K, Maki S, Niwa H, Yamaji M, Hashizume D (2009) Spectroscopic studies of the light-color modulation mechanism of firefly (beetle) bioluminescence. J Am Chem Soc 131:2385–2396

    Article  PubMed  CAS  Google Scholar 

  69. Imani M, Hosseinkhani S, Ahmadian S, Nazari M (2010) Design and introduction of a disulfide bridge in firefly luciferase: increase of thermostability and decrease of pH sensitivity. Photochem Photobiol Sci 9:1167–1177

    Article  PubMed  CAS  Google Scholar 

  70. Sala-Newby GB, Thomson CM, Campbell AK (1996) Sequence and Biochemical similarities between the luciferases of the glow-worm Lampyris noctiluca and the firefly luciferase from Photinus pyralis. Biochem J 313:761–767

    PubMed  CAS  Google Scholar 

  71. Mortazavi M, Hosseinkhani S, Khajeh K, Ranjbar B, Emamzadeh AR (2008) Spectroscopic and functional characterization of Lampyris turkestanicus luciferase: a comparative study. Acta Biochem Biophys Sin 40:365–374

    Article  CAS  Google Scholar 

  72. McCapra F, Gilfoyle DJ, Young DW, Church NJ, Spencer P (1994) In: Campbell AK, Kricka LJ, Stanley PE (eds) Bioluminescence and chemiluminescence: fundamental and applied aspects. Wiley, Chichester, pp 387–391

    Google Scholar 

  73. Brovko LY, Gandelman OA, Savich WI (1994) In: Campbell AK, Kricka LJ, Stanley PE (eds) Bioluminescence and chemiluminescence: fundamental and applied aspects. Wiley, Chichester, pp 525–527

    Google Scholar 

  74. Orlova G, Goddard JD, Brovko LY (2003) Theoretical study of the amazing firefly bioluminescence: the formation and structures of the light emitters. J Am Chem Soc 125:6962–6971

    Article  PubMed  CAS  Google Scholar 

  75. Ugarova NN, Brovko LY (2001) Relationship between the structure of the protein globule and bioluminescence spectra of firefly luciferase. Russ Chem Bull 50:1752–1761

    Article  CAS  Google Scholar 

  76. Gandelman OA, Brovko LY, Ugarova NN, Chikishev AY, Shkurimov AP (1993) Oxyluciferin fluorescence is a model of native bioluminescence in the firefly luciferin-luciferase system. J Photochem Photobiol B 19:187–191

    Article  CAS  Google Scholar 

  77. Branchini BR, Murtiashaw MH, Magyar RA, Portier NC, Ruggiero MC, Stroh JG (2002) Yellow-green and red firefly bioluminescence from 5, 5-dimethyloxyluciferin. J Am Chem Soc 124:2112–2113

    Article  PubMed  CAS  Google Scholar 

  78. Hastings JW (1996) Chemistries and colors of bioluminescent reactions: a review. Gene 173:5–11

    Article  PubMed  CAS  Google Scholar 

  79. Branchini BR, Southworth TL, Murtiashaw MH, Magyar RA, Gonzalez SA, Ruggiero MC, Stroh JG (2004) An alternative mechanism of bioluminescence color determination in firefly luciferase. Biochemistry 43:7255–7262

    Article  PubMed  CAS  Google Scholar 

  80. Hopkins TA, Seliger HH, White EH, Cass MH (1967) The chemiluminescence of firefly luciferin. A model for the bioluminescent reaction and identification of the product excited state. J Am Chem Soc 89:7148–7150

    Article  PubMed  CAS  Google Scholar 

  81. McCapra F, Chang YC, Francois VP (1968) The chemiluminescence of a firefly luciferin analogue. Chem Commun 22–23

  82. Shimomura O, Goto T, Johnson FH (1977) Source of oxygen in the CO2 produced in the bioluminescent oxidation of firefly luciferin. Proc Natl Acad Sci USA 74:2799–2802

    Article  PubMed  CAS  Google Scholar 

  83. Wannlund J, DeLuca M, Stempel K, Boyer PD (1978) Use of 14C-carboxyl-luciferin in determining the mechanism of the firefly luciferase catalyzed reactions. Biochem Biophys Res Commun 81:987–992

    Article  PubMed  CAS  Google Scholar 

  84. Conti E, Stachelhaus T, Marahiel MA, Brick P (1997) Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J 16:4174–4183

    Article  PubMed  CAS  Google Scholar 

  85. Auld DS, Lovell S, Thorne N, Lea WA, Maloney DJ, Shen M, Rai G, Battaile KP, Thomas CJ, Simeonov A, Hanzlik RP, Inglese J (2010) Molecular basis for the high-affinity binding and stabilization of firefly luciferase by PTC124. Proc Natl Acad Sci USA 107:4878–4883

    Article  PubMed  CAS  Google Scholar 

  86. Nakatsu T, Ichiyama S, Hiratake J, Saldanha A, Kobashi N, Sakata K, Kato H (2006) Structural basis for the spectral difference in luciferase bioluminescence. Nature 440:372–376

    Article  PubMed  CAS  Google Scholar 

  87. Mehrabi M, Hosseinkhani S, Ghobadi S (2008) Stabilization of firefly luciferase against thermal stress by osmolytes. Int J Biol Macromol 43:187–191

    Article  PubMed  CAS  Google Scholar 

  88. Ganjalikhany MR, Ranjbar B, Hosseinkhani S, Khalifeh K, Hassani L (2010) Roles of trehalose and magnesium sulfate on structural and functional stability of firefly luciferase. J Mol Catal B Enzym 62:127–132

    Article  CAS  Google Scholar 

  89. Yousefi-Nejad M, Hosseinkhani S, Khajeh K, Ranjbar B (2007) Expression, purification and immobilization of firefly luciferase on alkyl-substituted Sepharose 4B. Enzyme Microb Technol 40:740–746

    Article  CAS  Google Scholar 

  90. Emamzadeh AR, Hosseinkhani S, Sadeghizadeh M, Nikkhah M, Chaichi MJ, Mortazavi M (2006) cDNA cloning, expression and homology modeling of a luciferase from the firefly Lampyroidea maculata. J Biochem Mol Biol 39:578–585

    PubMed  CAS  Google Scholar 

  91. Inouye S (2010) Firefly luciferase: an adenylate-forming enzyme for multicatalytic functions. Cell Mol Life Sci 67:387–404

    Article  PubMed  CAS  Google Scholar 

  92. Viviani VR, Bechara EJ, Ohmiya Y (1999) Cloning, sequence analysis, and expression of active Phrixothrix railroad-worms luciferases: relationship between bioluminescence spectra and primary structures. Biochemistry 38:8271–8279

    Article  PubMed  CAS  Google Scholar 

  93. Tafreshi NKh, Hosseinkhani S, Sadeghizadeh M, Sadeghi M, Ranjbar B, Naderi-Manesh H (2007) The influence of insertion of a critical residue (Arg356) in structure and bioluminescence spectra of firefly luciferase. J Biol Chem 282:8641–8647

    Article  PubMed  CAS  Google Scholar 

  94. Moradi A, Hosseinkhani S, Naderi-Manesh H, Sadeghizadeh M, Alipour BS (2009) Effect of charge distribution in a flexible loop on the bioluminescence color of firefly luciferases. Biochemistry 48:575–582

    Article  PubMed  CAS  Google Scholar 

  95. Viviani VR, Arnoldi FG, Ogawa FT, Brochetto-Braga M (2007) Few substitutions affect the bioluminescence spectra of Phrixothrix (Coleoptera: Phengodidae) luciferases: a site-directed mutagenesis survey. Luminescence 22:362–369

    Article  PubMed  CAS  Google Scholar 

  96. Alipour BS, Hosseinkhani S, Ardestani SK, Moradi A (2009) The effective role of positive charge saturation in bioluminescence color and thermostability of firefly luciferase. Photochem Photobiol Sci 8:847–855

    Article  CAS  Google Scholar 

  97. Dennis D, Stanford RH (1973) The crystal and molecular structure of firefly D(−)-luciferin. Acta Crystallogr B 29:1053–1058

    Article  CAS  Google Scholar 

  98. Blank GE, Pletcher J, Sax M (1974) On the crystal structure of firefly D(−)-luciferin. Acta Crystallogr B 30:2525

    Article  Google Scholar 

  99. Blank GE, Pletcher J, Sax M (1971) The molecular structure of firefly D-(−)-luciferin: a single crystal x-ray analysis. Biochem Biophys Res Commun 42:583–588

    Article  PubMed  CAS  Google Scholar 

  100. Suzuki N, Sato M, Okada K, Goto T (1972) Studies on firefly bioluminescence-I: synthesis and spectral properties of firefly oxyluciferin, a possible emitting species in firefly bioluminescence. Tetrahedron 28:4065–4074

    Article  CAS  Google Scholar 

  101. Naumov P, Ozawa Y, Ohkubo K, Fukuzumi S (2009) Structure and spectroscopy of oxyluciferin, the light emitter of the firefly bioluminescence. J Am Chem Soc 131:11590–11605

    Article  PubMed  CAS  Google Scholar 

  102. Wada N, Shibata R (1997) Absorption spectral changes of firefly luciferin in deoxygenated dimethyl sulfoxide. J Phys Soc Jpn 66:3312–3313

    Article  CAS  Google Scholar 

  103. Wada N, Mitsuta K, Kohno M, Suzuki N (1989) ESR studies of firefly D-(−)-luciferin chemiluminescence in dimethyl sulfoxide. J Phys Soc Jpn 58:3501–3504

    Article  CAS  Google Scholar 

  104. Brovko LY, Cherednikova EY, Chikishev AY, Chudinova EA (1998) Effect of microenvironment on spectral-kinetic properties of firefly luciferin. Moscow Univ Trans Phys Astron Ser 3:26–29

    Google Scholar 

  105. Navizet I, Liu YJ, Ferré N, Xiao HY, Fang WH, Lindh R (2010) Color-tuning mechanism of firefly investigated by multi-configurational perturbation method. J Am Chem Soc 132:706–712

    Article  PubMed  CAS  Google Scholar 

  106. Li Zw, Ren Am, Guo JF, Yang T, Goddard JD, Feng JK (2008) Color-tuning mechanism in firefly luminescence: theoretical studies on fluorescence of oxyluciferin in aqueous solution using time dependent density functional theory. J Phys Chem A 112:9796–9800

    Article  PubMed  CAS  Google Scholar 

  107. Yang T, Goddard JD (2007) Predictions of the geometries and fluorescence emission energies of oxyluciferins. J Phys Chem A 111:4489–4497

    Article  PubMed  CAS  Google Scholar 

  108. Ren A, Guo J, Feng J, Zou L, Li Z, Goddard JD (2008) TDDFT study of the electronic structure, absorption and emission spectra of the light emitters of the amazing firefly bioluminescence and solvation effects on the spectra. Chin J Chem 26:55–64

    Article  CAS  Google Scholar 

  109. Nakatani N, Hasegawa JY, Nakatsuji H (2009) Artificial color tuning of firefly luminescence: theoretical mutation by tuning electrostatic interactions between protein and luciferin. Chem Phys Lett 469:191–194

    Article  CAS  Google Scholar 

  110. Kobayashi R, Amos RD (2006) The application of CAM-B3LYP to the charge-transfer band problem of the zincbacteriochlorin–bacteriochlorin complex. Chem Phys Lett 420:106–109

    Article  CAS  Google Scholar 

  111. Tozer DJ, Amos RD, Handy NC, Roos BO, Serrano-Andre′s L (1999) Does density functional theory contribute to the understanding of excited states of unsaturated organic compounds? Mol Phys 97:859–868

    Article  CAS  Google Scholar 

  112. Tagami A, Ishibashi N, Kato DI, Taguchi N, Mochizuki Y, Watanabe H, Ito M, Tanaka S (2009) Ab initio quantum-chemical study on emission spectra of bioluminescent luciferases by fragment molecular orbital method. Chem Phys Lett 472:118–123

    Article  CAS  Google Scholar 

  113. Maghami P, Ranjbar B, Hosseinkhani S, Ghasemi A, Moradi A, Gill P (2010) Relationship between stability and bioluminescence color of firefly luciferase. Photochem Photobiol Sci 9:376–383

    Article  PubMed  CAS  Google Scholar 

  114. Ataei F, Hosseinkhani S, Khajeh K (2009) Limited proteolysis of luciferase as a reporter in nanosystem biology: a comparative study. Photochem Photobiol 85:1162–1167

    Article  PubMed  CAS  Google Scholar 

  115. Ataei F, Hosseinkhani S, Khajeh K (2009) Luciferase protection against proteolytic degradation: a key for improving signal in nano-system biology. J Biotechnol 144:83–88

    Article  PubMed  CAS  Google Scholar 

  116. Thompson JF, Geoghegan KF, Lloyd DB, Lanzetti AJ, Magyar RA, Anderson SM, Branchini BR (1997) Mutation of a protease-sensitive region in firefly luciferase alters light emission properties. J Biol Chem 272:18766–18771

    Article  PubMed  CAS  Google Scholar 

  117. Riahi-Madvar A, Hosseinkhani S (2009) Design and characterization of novel trypsin-resistant firefly luciferases by site-directed mutagenesis. Protein Eng Des Sel 22:655–663

    Article  PubMed  CAS  Google Scholar 

  118. Nakatani N, Hasegawa J, Nakatsuji H (2007) Red light in chemiluminescence and yellow-green light in bioluminescence:# color-tuning mechanism of firefly, Photinus pyralis, studied by the symmetry-adapted cluster–configuration interaction method. J Am Chem Soc 129:8756–8765

    Article  PubMed  CAS  Google Scholar 

  119. Naumov P, Kochunnoonny M (2010) Spectral-structural effects of the keto-enol-enolate and phenol-phenolate equilibria of oxyluciferin. J Am Chem Soc 132:11566–11579

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research council of Tarbiat Modares University (Prof. Y. Fathollahi) for financial support of bioluminescence research program is acknowledged. I thank Ms. Farangis Ataei for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saman Hosseinkhani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosseinkhani, S. Molecular enigma of multicolor bioluminescence of firefly luciferase. Cell. Mol. Life Sci. 68, 1167–1182 (2011). https://doi.org/10.1007/s00018-010-0607-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0607-0

Keywords

Navigation