Skip to main content
Log in

The evolution, complex structures and function of septin proteins

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The septin family is a conserved GTP-binding protein family and was originally discovered through genetic screening for budding yeast mutants. Septins are implicated in many cellular processes in fungi and metazoa. The function of septins usually depends on septin assembling into oligomeric complexes and highly ordered polymers. The expansion of the septin gene number in vertebrates increased the complex diversity of septins. In this review, we first discuss the evolution, structures and assembly of septin proteins in yeast and metazoa. Then, we review the function of septin proteins in cytokinesis, membrane remodeling and compartmentalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hartwell LH (1971) Genetic control of cell division cycle in yeast. 4. Genes controlling bud emergence and cytokinesis. Exp Cell Res 69:265

    Article  PubMed  CAS  Google Scholar 

  2. Byers B, Goetsch L (1976) Highly ordered ring of membrane-associated filaments in budding yeast. J Cell Biol 69:717–721

    Article  PubMed  CAS  Google Scholar 

  3. Leipe DD, Wolf YI, Koonin EV, Aravind L (2002) Classification and evolution of P-loop GTPases and related ATPases. J Mol Biol 317:41–72

    Article  PubMed  CAS  Google Scholar 

  4. Kinoshita M (2003) The septins. Genome Biol 4

  5. Field CM, Kellogg D (1999) Septins: cytoskeletal polymers or signalling GTPases? Trends Cell Biol 9:387–394

    Article  PubMed  CAS  Google Scholar 

  6. Longtine MS, Bi EF (2003) Regulation of septin organization and function in yeast. Trends Cell Biol 13:403–409

    Article  PubMed  CAS  Google Scholar 

  7. Versele M, Thorner J (2005) Some assembly required: yeast septins provide the instruction manual. Trends Cell Biol 15:414–424

    Article  PubMed  CAS  Google Scholar 

  8. Kinoshita M (2006) Diversity of septin scaffolds. Curr Opin Cell Biol 18:54–60

    Article  PubMed  CAS  Google Scholar 

  9. Spiliotis ET, Nelson WJ (2006) Here come the septins: novel polymers that coordinate intracellular functions and organization. J Cell Sci 119:4–10

    Article  PubMed  CAS  Google Scholar 

  10. Weirich CS, Erzberger JP, Barral Y (2008) The septin family of GTPases: architecture and dynamics. Nat Rev Mol Cell Biol 9:478–489

    Article  PubMed  CAS  Google Scholar 

  11. Barral Y, Kinoshita M (2008) Structural insights shed light onto septin assemblies and function. Curr Opin Cell Biol 20:12–18

    Article  PubMed  CAS  Google Scholar 

  12. Cao LH, Ding XM, Yu WB, Yang XM, Shen SQ, Yu L (2007) Phylogenetic and evolutionary analysis of the septin protein family in metazoan. FEBS Lett 581:5526–5532

    Article  PubMed  CAS  Google Scholar 

  13. Sanders SL, Herskowitz I (1996) The Bud4 protein of yeast, required for axial budding, is localized to the mother/bud neck in a cell cycle-dependent manner. J Cell Biol 134:413–427

    Article  PubMed  CAS  Google Scholar 

  14. DeMarini DJ, Adams AEM, Fares H, DeVirgilio C, Valle G, Chuang JS, Pringle JR (1997) A septin-based hierarchy of proteins required for localized deposition of chitin in the Saccharomyces cerevisiae cell wall. J Cell Biol 139:75–93

    Article  PubMed  CAS  Google Scholar 

  15. Kusch J, Meyer A, Snyder MP, Barral Y (2002) Microtubule capture by the cleavage apparatus is required for proper spindle positioning in yeast. Genes Dev 16:1627–1639

    Article  PubMed  CAS  Google Scholar 

  16. Grava S, Schaerer F, Faty M, Philippsen P, Barral Y (2006) Asymmetric recruitment of dynein to spindle poles and microtubules promotes proper spindle orientation in yeast. Dev Cell 10:425–439

    Article  PubMed  CAS  Google Scholar 

  17. Barral Y, Parra M, Bidlingmaier S, Snyder M (1999) Nim1-related kinases coordinate cell cycle progression with the organization of the peripheral cytoskeleton in yeast. Genes Dev 13:176–187

    Article  PubMed  CAS  Google Scholar 

  18. Longtine MS, Theesfeld CL, McMillan JN, Weaver E, Pringle JR, Lew DJ (2000) Septin-dependent assembly of a cell cycle-regulatory module in Sacharomyces cerevisiae. Mol Cell Biol 20:4049–4061

    Article  PubMed  CAS  Google Scholar 

  19. Bi E, Maddox P, Lew DJ, Salmon ED, McMillan JN, Yeh E, Pringle JR (1998) Involvement of an actomyosin contractile ring in Saccharomyces cerevisiae cytokinesis. J Cell Biol 142:1301–1312

    Article  PubMed  CAS  Google Scholar 

  20. Shulewitz MJ, Inouye CJ, Thorner J (1999) Hsl7 localizes to a septin ring and serves as an adapter in a regulatory pathway that relieves tyrosine phosphorylation of Cdc28 protein kinase in Saccharomyces cerevisiae. Mol Cell Biol 19:7123–7137

    PubMed  CAS  Google Scholar 

  21. Barral Y, Mermall V, Mooseker MS, Snyder M (2000) Compartmentalization of the cell cortex by septins is required for maintenance of cell polarity in yeast. Mol Cell 5:841–851

    Article  PubMed  CAS  Google Scholar 

  22. Dobbelaere J, Barral Y (2004) Spatial coordination of cytokinetic events by compartmentalization of the cell cortex. Science 305:393–396

    Article  PubMed  CAS  Google Scholar 

  23. Enserink JM, Smolka MB, Zhou HL, Kolodner RD (2006) Checkpoint proteins control morphogenetic events during DNA replication stress in Saccharomyces cerevisiae. J Cell Biol 175:729–741

    Article  PubMed  CAS  Google Scholar 

  24. Smolka MB, Chen SH, Maddox PS, Enserink JM, Albuquerque CP, Wei XX, Desai A, Kolodner RD, Zhou HL (2006) An FHA domain-mediated protein interaction network of Rad53 reveals its role in polarized cell growth. J Cell Biol 175:743–753

    Article  PubMed  CAS  Google Scholar 

  25. Nagata K, Kawajiri A, Matsui S, Takagishi M, Shiromizu T, Saitoh N, Izawa I, Kiyono T, Itoh TJ, Hotani H, Inagaki M (2003) Filament formation of MSF-A, a mammalian septin, in human mammary epithelial cells depends on interactions with microtubules. J Biol Chem 278:18538–18543

    Article  PubMed  CAS  Google Scholar 

  26. Kartmann B, Roth D (2001) Novel roles for mammalian septins: from vesicle trafficking to oncogenesis. J Cell Sci 114:839–844

    PubMed  CAS  Google Scholar 

  27. Kremer BE, Adang LA, Macara IG (2007) Septins regulate actin organization and cell-cycle arrest through nuclear accumulation of NCK mediated by SOCS7. Cell 130:837–850

    Article  PubMed  CAS  Google Scholar 

  28. Kinoshita M, Kumar S, Mizoguchi A, Ide C, Kinoshita A, Haraguchi T, Hiraoka Y, Noda M (1997) Nedd5, a mammalian septin, is a novel cytoskeletal component interacting with actin-based structures. Genes Dev 11:1535–1547

    Article  PubMed  CAS  Google Scholar 

  29. Nguyen TQ, Sawa H, Okano H, White JG (2000) The C-elegans septin genes, unc-59 and unc-61, are required for normal postembryonic cytokineses and morphogenesis but have no essential function in embryogenesis. J Cell Sci 113:3825–3837

    PubMed  CAS  Google Scholar 

  30. Spiliotis ET, Kinoshita M, Nelson WJ (2005) A mitotic septin scaffold required for mammalian chromosome congression and segregation. Science 307:1781–1785

    Article  PubMed  CAS  Google Scholar 

  31. Hsu SC, Hazuka CD, Roth R, Foletti DL, Heuser J, Scheller RH (1998) Subunit composition, protein interactions, and structures of the mammalian brain sec6/8 complex and septin filaments. Neuron 20:1111–1122

    Article  PubMed  CAS  Google Scholar 

  32. Finger FP, Kopish KR, White JG (2003) A role for septins in cellular and axonal migration in C-elegans. Dev Biol 261:220–234

    Article  PubMed  CAS  Google Scholar 

  33. Gonzalez ME, Makarova O, Peterson EA, Privette LM, Petty EM (2009) Up-regulation of SEPT9_v1 stabilizes c-Jun-N-Terminal kinase and contributes to its pro-proliferative activity in mammary epithelial cells. Cell Signal 21:477–487

    Article  PubMed  CAS  Google Scholar 

  34. Amir S, Wang R, Simons JW, Mabjeesh NJ (2009) SEPT9_v1 Up-regulates hypoxia-inducible factor 1 by preventing its RACK1-mediated degradation. J Biol Chem 284:11142–11151

    Article  PubMed  CAS  Google Scholar 

  35. Ihara M, Yamasaki N, Hagiwara A, Tanigaki A, Kitano A, Hikawa R, Tomimoto H, Noda M, Masashi T, Mori H, Hattori N, Miyakawa T, Kinoshita M (2007) Sept4, a component of presynaptic scaffold and Lewy bodies, is required for the suppression of alpha-synuclein neurotoxicity. Neuron 53:519–533

    Article  PubMed  CAS  Google Scholar 

  36. John CM, Hite RK, Weirich CS, Fitzgerald DJ, Jawhari H, Faty M, Schlapfer D, Kroschewski R, Winkler FK, Walz T, Barral Y, Steinmetz MO (2007) The Caenorhabditis elegans septin complex is nonpolar. EMBO J 26:3296–3307

    Article  PubMed  CAS  Google Scholar 

  37. Bertin A, McMurray MA, Grob P, Park SS, Garcia G, Patanwala I, Ng HL, Alber T, Thorner J, Nogales E (2008) Saccharomyces cerevisiae septins: supramolecular organization of heterooligomers and the mechanism of filament assembly. Proc Natl Acad Sci USA 105:8274–8279

    Article  PubMed  CAS  Google Scholar 

  38. Sirajuddin M, Farkasovsky M, Hauer F, Kuhlmann D, Macara IG, Weyand M, Stark H, Wittinghofer A (2007) Structural insight into filament formation by mammalian septins. Nature 449:311–315

    Google Scholar 

  39. Pan FF, Malmberg RL, Momany M (2007) Analysis of septins across kingdoms reveals orthology and new motifs. BMC Evol Biol 7:103

    Google Scholar 

  40. Zhang JS, Kong C, Xie H, McPherson PS, Grinstein S, Trimble WS (1999) Phosphatidyl inositol polyphosphate binding to the mammalian septin H5 is modulated by GTP. Curr Biol 9:1458–1467

    Article  PubMed  CAS  Google Scholar 

  41. Casamayor A, Snyder M (2003) Molecular dissection of a yeast septin: Distinct domains are required for septin interaction, localization, and function. Mol Cell Biol 23:2762–2777

    Article  PubMed  CAS  Google Scholar 

  42. Versele M, Gullbrand B, Shulewitz MJ, Cid VJ, Bahmanyar S, Chen RE, Barth P, Alber T, Thorner J (2004) Protein-protein interactions governing septin heteropentamer assembly and septin filament organization in Saccharomyces cerevisiae. Mol Biol Cell 15:4568–4583

    Article  PubMed  CAS  Google Scholar 

  43. Lukoyanova N, Baldwin SA, Trinick J (2008) 3D reconstruction of mammalian septin filaments. J Mol Biol 376:1–7

    Article  PubMed  CAS  Google Scholar 

  44. Kinoshita M, Field CM, Coughlin ML, Straight AF, Mitchison TJ (2002) Self- and actin-templated assembly of mammalian septins. Dev Cell 3:791–802

    Article  PubMed  CAS  Google Scholar 

  45. Field CM, AlAwar O, Rosenblatt J, Wong ML, Alberts B, Mitchison TJ (1996) A purified Drosophila septin complex forms filaments and exhibits GTPase activity. J Cell Biol 133:605–616

    Article  PubMed  CAS  Google Scholar 

  46. Frazier JA, Wong ML, Longtine MS, Pringle JR, Mann M, Mitchison TJ, Field C (1998) Polymerization of purified yeast septins: evidence that organized filament arrays may not be required for septin function. J Cell Biol 143:737–749

    Article  PubMed  CAS  Google Scholar 

  47. Mendoza M, Hyman AA, Glotzer M (2002) GTP binding induces filament assembly of a recombinant septin. Curr Biol 12:1858–1863

    Article  PubMed  CAS  Google Scholar 

  48. Versele M, Thorner J (2004) Septin collar formation in budding yeast requires GTP binding and direct phosphorylation by the PAK, Cla4. J Cell Biol 164:701–715

    Article  PubMed  CAS  Google Scholar 

  49. An HB, Morrell JL, Jennings JL, Link AJ, Gould KL (2004) Requirements of fission yeast septins for complex formation, localization, and function. Mol Biol Cell 15:5551–5564

    Article  PubMed  CAS  Google Scholar 

  50. Sheffield PJ, Oliver CJ, Kremer BE, Sheng ST, Shao ZF, Macara IG (2003) Borg/septin interactions and the assembly of mammalian septin heterodimers, trimers, and filaments. J Biol Chem 278:3483–3488

    Article  PubMed  CAS  Google Scholar 

  51. Nagata K, Asano T, Nozawa Y, Inagaki M (2004) Biochemical and cell biological analyses of a mammalian septin complex, Sept7/9b/11. J Biol Chem 279:55895–55904

    Article  PubMed  CAS  Google Scholar 

  52. Joberty G, Perlungher RR, Sheffield PJ, Kinoshita M, Noda M, Haystead T, Macara IG (2001) Borg proteins control septin organization and are negatively regulated by Cdc42. Nat Cell Biol 3:861–866

    Article  PubMed  CAS  Google Scholar 

  53. Kinoshita M (2003) Assembly of mammalian septins. J Biochem 134:491–496

    Article  PubMed  CAS  Google Scholar 

  54. Hall PA, Jung K, Hillan KJ, Russell SEH (2005) Expression profiling the human septin gene family. J Pathol 206:269–278

    Article  PubMed  CAS  Google Scholar 

  55. Rodal AA, Kozubowski L, Goode BL, Drubin DG, Hartwig JH (2005) Actin and septin ultrastructures at the budding yeast cell cortex. Mol Biol Cell 16:372–384

    Article  PubMed  CAS  Google Scholar 

  56. Gladfelter AS, Pringle JR, Lew DJ (2001) The septin cortex at the yeast mother–bud neck. Curr Opin Microbiol 4:681–689

    Article  PubMed  CAS  Google Scholar 

  57. Iwase M, Luo JY, Nagaraj S, Longtine M, Kim HB, Haarer BK, Caruso C, Tong ZT, Pringle JR, Bi EF (2006) Role of a Cdc42p effector pathway in recruitment of the yeast septins to the presumptive bud site. Mol Biol Cell 17:1110–1125

    Article  PubMed  CAS  Google Scholar 

  58. Lippincott J, Shannon KB, Shou WY, Deshaies J, Li R (2001) The Tem1 small GTPase controls actomyosin and septin dynamics during cytokinesis. J Cell Sci 114:1379–1386

    PubMed  CAS  Google Scholar 

  59. Caviston JP, Longtine M, Pringle JR, Bi E (2003) The role of Cdc42p GTPase-activating proteins in assembly of the septin ring in yeast. Mol Biol Cell 14:4051–4066

    Article  PubMed  CAS  Google Scholar 

  60. Dobbelaere J, Gentry MS, Hallberg RL, Barral Y (2003) Phosphorylation-dependent regulation of septin dynamics during the cell cycle. Dev Cell 4:345–357

    Article  PubMed  CAS  Google Scholar 

  61. Vrabioiu AM, Mitchison TJ (2006) Structural insights into yeast septin organization from polarized fluorescence microscopy. Nature 443:466–469

    Article  PubMed  CAS  Google Scholar 

  62. Vrabioiu AM, Mitchison TJ (2007) Symmetry of septin hourglass and ring structures. J Mol Biol 372:37–49

    Article  PubMed  CAS  Google Scholar 

  63. McMurray MA, Thorner J (2008) Septin stability and recycling during dynamic structural transitions in cell division and development. Curr Biol 18:1203–1208

    Article  PubMed  CAS  Google Scholar 

  64. Berlin A, Paoletti A, Chang F (2003) Mid2p stabilizes septin rings during cytokinesis in fission yeast. J Cell Biol 160:1083–1092

    Article  PubMed  CAS  Google Scholar 

  65. Tasto JJ, Morrell JL, Gould KL (2003) An anillin homologue, Mid2p, acts during fission yeast cytokinesis to organize the septin ring and promote cell separation. J Cell Biol 160:1093–1103

    Article  PubMed  CAS  Google Scholar 

  66. Wu JQ, Kuhn JR, Kovar DR, Pollard TD (2003) Spatial and temporal pathway for assembly and constriction of the contractile ring in fission yeast cytokinesis. Dev Cell 5:723–734

    Article  PubMed  CAS  Google Scholar 

  67. Ihara M, Kinoshita A, Yamada S, Tanaka H, Tanigaki A, Kitano A, Goto M, Okubo K, Nishiyama H, Ogawa O, Takahashi C, Ogawa O, Takahashi C, Itohara S, Nishimune Y, Noda M, Kinoshita M (2005) Cortical organization by the septin cytoskeleton is essential for structural and mechanical integrity of mammalian spermatozoa. Dev Cell 8:343–352

    Article  PubMed  CAS  Google Scholar 

  68. Kissel H, Georgescu MM, Larisch S, Manova K, Hunnicutt GR, Steller H (2005) The Sept4 septin locus is required for sperm terminal differentiation in mice. Dev Cell 8:353–364

    Article  PubMed  CAS  Google Scholar 

  69. Oegema K, Savoian MS, Mitchison TJ, Field CM (2000) Functional analysis of a human homologue of the Drosophila actin binding protein anillin suggests a role in cytokinesis. J Cell Biol 150:539–551

    Article  PubMed  CAS  Google Scholar 

  70. Schmidt K, Nichols BJ (2004) Functional interdependence between septin and actin cytoskeleton. BMC Cell Biol 5:43

    Google Scholar 

  71. Nagaraj S, Rajendran A, Jackson CE, Longtine MS (2008) Role of nucleotide binding in septin-septin interactions and septin localization in Saccharomyces cerevisiae. Mol Cell Biol 28:5120–5137

    Article  PubMed  CAS  Google Scholar 

  72. Vega IE, Hsu SC (2003) The septin protein Nedd5 associates with both the exocyst complex and microtubules and disruption of its GTPase activity promotes aberrant neurite sprouting in PC12 cells. NeuroReport 14:31–37

    Article  PubMed  CAS  Google Scholar 

  73. Hanai N, Nagata K, Kawajiri A, Shiromizu T, Saitoh N, Hasegawa Y, Murakami S, Inagaki M (2004) Biochemical and cell biological characterization of a mammalian septin, Sept 11. FEBS Lett 568:83–88

    Article  PubMed  CAS  Google Scholar 

  74. Robertson C, Church SW, Nagar HA, Price J, Hall PA, Russell SEH (2004) Properties of SEPT9 isoforms and the requirement for GTP binding. J Pathol 203:519–527

    Article  PubMed  CAS  Google Scholar 

  75. Ding XM, Yu WB, Liu M, Shen SQ, Chen F, Cao LH, Wan B, Yu L (2008) GTP binding is required for SEPT12 to form filaments and to interact with SEPT11. Molecules and Cells 25:385–389

    PubMed  CAS  Google Scholar 

  76. Vrabioiu AM, Gerber SA, Gygi SP, Field CM, Mitchison TJ (2004) The majority of the Saccharomyces cerevisiae septin complexes do not exchange guanine nucleotides. J Biol Chem 279:3111–3118

    Google Scholar 

  77. Huang Y, Surka MC, Reynaud D, Pace-Asciak C, Trimble WS (2006) GTP binding and hydrolysis kinetics of human septin 2. FEBS J 273:3248–3260

    Article  PubMed  CAS  Google Scholar 

  78. Gladfelter AS, Bose I, Zyla TR, Bardes ESG, Lew DJ (2002) Septin ring assembly involves cycles of GTP loading and hydrolysis by Cdc42p. J Cell Biol 156:315–326

    Article  PubMed  CAS  Google Scholar 

  79. Smith GR, Givan SA, Cullen P, Sprague GF (2002) GTPase-activating proteins for Cdc42. Eukaryotic Cell 1:469–480

    Article  PubMed  CAS  Google Scholar 

  80. Park HO, Bi EF (2007) Central roles of small GTPases in the development of cell polarity in yeast and beyond. Microbiol Mol Biol Rev 71:48–96

    Article  PubMed  CAS  Google Scholar 

  81. Jeong JW, Kim DH, Choi SY, Kim HB (2001) Characterization of the CDC10 product and the timing of events of the budding site of Saccharomyces cerevisiae. Molecules and Cells 12:77–83

    PubMed  CAS  Google Scholar 

  82. Longtine MS, Fares H, Pringle JR (1998) Role of the yeast Gin4p protein kinase in septin assembly and the relationship between septin assembly and septin function. J Cell Biol 143:719–736

    Article  PubMed  CAS  Google Scholar 

  83. Bouquin N, Barral Y, Courbeyrette R, Blondel M, Snyder M, Mann C (2000) Regulation of cytokinesis by the Elm1 protein kinase in Saccharomyces cerevisiae. J Cell Sci 113:1435–1445

    PubMed  CAS  Google Scholar 

  84. Lee PR, Song S, Ro HS, Park CJ, Lippincott J, Li R, Pringle JR, De Virgilio C, Longtine MS, Lee KS (2002) Bni5p, a septin-interacting protein, is required for normal septin function and cytokinesis in Saccharomyces cerevisiae. Mol Cell Biol 22:6906–6920

    Article  PubMed  CAS  Google Scholar 

  85. Gladfelter AS, Kozubowski L, Zyla TR, Lew DJ (2005) Interplay between septin organization, cell cycle and cell shape in yeast. J Cell Sci 118:1617–1628

    Article  PubMed  CAS  Google Scholar 

  86. Kadota J, Yamamoto T, Yoshiuchi S, Bi E, Tanaka K (2004) Regulation of the initial septin ring assembly by polarisome components, a PAK kinase Cla4p, and the actin cytoskeleton in budding yeast. Mol Biol Cell 15:45A–45A

    Article  CAS  Google Scholar 

  87. Mortensen EM, McDonald H, Yates J, Kellogg DR (2002) Cell cycle-dependent assembly of a Gin4-septin complex. Mol Biol Cell 13:2091–2105

    Article  PubMed  CAS  Google Scholar 

  88. Asano S, Park JE, Yu LR, Zhou M, Sakchaisri K, Park CJ, Kang YH, Thorner J, Veenstra TD, Lee KS (2006) Direct phosphorylation and activation of a Nim1-related kinase Gin4 by Elm1 in budding yeast. J Biol Chem 281:27090–27098

    Article  PubMed  CAS  Google Scholar 

  89. Ito H, Iwamoto I, Morishita R, Nozawa Y, Narumiya S, Asano T, Nagata KI (2005) Possible role of Rho/Rhotekin signaling in mammalian septin organization. Oncogene 24:7064–7072

    Article  PubMed  CAS  Google Scholar 

  90. Nagata KI, Inagaki M (2005) Cytoskeletal modification of Rho guanine nucleotide exchange factor activity: identification of a Rho guanine nucleotide exchange factor as a binding partner for Sept9b, a mammalian septin. Oncogene 24:65–76

    Article  PubMed  CAS  Google Scholar 

  91. Becker W, Lutz B (2008) The down syndrome candidate dual-specificity tyrosine phosphorylation-regulated kinase 1a phosphorylates the neurodegeneration-related septin 4. Neuroscience 157:596–605

    Article  PubMed  CAS  Google Scholar 

  92. Xue J, Tsang CW, Gai WP, Malladi CS, Trimble WS, Rostas JAP, Robinson PJ (2004) Septin 3 (G-septin) is a developmentally regulated phosphoprotein enriched in presynaptic nerve terminals. J Neurochem 91:579–590

    Article  PubMed  CAS  Google Scholar 

  93. Xue J, Wang X, Malladi CS, Kinoshita M, Milburn PJ, Lengyel I, Rostas JAP, Robinson PJ (2000) Phosphorylation of a new brain-specific septin, G-septin, by cGMP-dependent protein kinase. J Biol Chem 275:10047–10056

    Article  PubMed  CAS  Google Scholar 

  94. Qi MY, Yu WB, Liu S, Jia HJ, Tang LS, Shen MJ, Yan XM, Saiyin H, Lang QY, Wan B, Zhao SY, Yu L (2005) Septin1, a new interaction partner for human serine/threonine kinase aurora-B. Biochem Biophys Res Commun 336:994–1000

    Article  PubMed  CAS  Google Scholar 

  95. She YM, Huang YW, Zhang L, Trimble WS (2004) Septin 2 phosphorylation: theoretical and mass spectrometric evidence for the existence of a single phosphorylation site in vivo. Rapid Commun Mass Spectrom 18:1123–1130

    Article  PubMed  CAS  Google Scholar 

  96. Amin ND, Zheng YL, Kesavapany S, Kanungo J, Guszczynski T, Sihag RK, Rudrabhatla P, Albers W, Grant P, Pant HC (2008) Cyclin-dependent kinase 5 phosphorylation of human septin SEPT5 (hCDCrel-1) modulates exocytosis. J Neurosci 28:3631–3643

    Article  PubMed  CAS  Google Scholar 

  97. Johnson ES, Blobel G (1999) Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins. J Cell Biol 147:981–993

    Article  PubMed  CAS  Google Scholar 

  98. Johnson ES, Gupta AA (2001) An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 106:735–744

    Article  PubMed  CAS  Google Scholar 

  99. Takahashi Y, Iwase M, Konishi M, Tanaka M, Toh-e A, Kikuchi Y (1999) Smt3, a SUMO-1 homolog, is conjugated to Cdc3, a component of septin rings at the mother-bud neck in budding yeast. Biochem Biophys Res Commun 259:582–587

    Article  PubMed  CAS  Google Scholar 

  100. Takahashi Y, Kahyo T, Toh-e A, Yasuda H, Kikuchi Y (2001) Yeast Ull1/Siz1 is a novel SUM01/Smt3 ligase for septin components and functions as an adaptor between conjugating enzyme and substrates. J Biol Chem 276:48973–48977

    Article  PubMed  CAS  Google Scholar 

  101. Takahashi Y, Mizoi J, Toh-e A, Kikuchi Y (2000) Yeast Ulp1, an Smt3-specific protease, associates with nucleoporins. J Biochem 128:723–725

    PubMed  CAS  Google Scholar 

  102. Makhnevych T, Ptak C, Lusk CP, Aitchison JD, Wozniak RW (2007) The role of karyopherins in the regulated sumoylation of septins. J Cell Biol 177:39–49

    Article  PubMed  CAS  Google Scholar 

  103. Shih HP, Hales KG, Pringle JR, Peifer M (2002) Identification of septin-interacting proteins and characterization of the Smt3/SUMO-conjugation system in Drosophila. J Cell Sci 115:1259–1271

    PubMed  CAS  Google Scholar 

  104. Field CM, Coughlin M, Doberstein S, Marty T, Sullivan W (2005) Characterization of anillin mutants reveals essential roles in septin localization and plasma membrane integrity. Development 132:2849–2860

    Article  PubMed  CAS  Google Scholar 

  105. Silverman-Gavrila RV, Hales KG, Wilde A (2008) Anillin-mediated targeting of Peanut to pseudocleavage furrows is regulated by the GTPase Ran. Mol Biol Cell 19:3735–3744

    Article  PubMed  CAS  Google Scholar 

  106. Vallen EA, Caviston J, Bi E (2000) Roles of Hof1p, Bni1p, Bnr1p, and Myo1p in cytokinesis in Saccharomyces cerevisiae. Mol Biol Cell 11:593–611

    PubMed  CAS  Google Scholar 

  107. Cid VJ, Adamikova L, Sanchez M, Molina M, Nombela C (2001) Cell cycle control of septin ring dynamics in the budding yeast. Microbiol Sgm 147:1437–1450

    CAS  Google Scholar 

  108. Bardin AJ, Visintin R, Amon A (2000) A mechanism for coupling exit from mitosis to partitioning of the nucleus. Cell 102:21–31

    Article  PubMed  CAS  Google Scholar 

  109. Pereira G, Schiebel E (2005) Kin4 kinase delays mitotic exit in response to spindle alignment defect. Mol Cell 19:209–221

    Article  PubMed  CAS  Google Scholar 

  110. Jensen S, Geymonat M, Johnson AL, Segal M, Johnston LH (2002) Spatial regulation of the guanine nucleotide exchange factor Lte1 in Saccharomyces cerevisiae. J Cell Sci 115:4977–4991

    Article  PubMed  CAS  Google Scholar 

  111. Seshan A, Bardin AJ, Amon A (2002) Control of Lte1 localization by cell polarity determinants and Cdc14. Curr Biol 12:2098–2110

    Article  PubMed  CAS  Google Scholar 

  112. Castillon GA, Adames NR, Rosello CH, Seidel HS, Longtine MS, Cooper JA, Heil-Chapdelaine RA (2003) Septins have a dual role in controlling mitotic exit in budding yeast. Curr Biol 13:654–658

    Article  PubMed  CAS  Google Scholar 

  113. D’Aquino KE, Monje-Casas F, Paulson J, Reiser V, Charles GM, Lai L, Shokat KM, Amon A (2005) The protein kinase Kin4 inhibits exit from mitosis in response to spindle position defects. Mol Cell 19:223–234

    Article  PubMed  CAS  Google Scholar 

  114. Hu FH, Wang YC, Liu D, Li YM, Qin J, Elledge SJ (2001) Regulation of the Bub2/Bfal GAP complex by Cdc5 and cell cycle checkpoints. Cell 107:655–665

    Article  PubMed  CAS  Google Scholar 

  115. Sakchaisri K, Asano S, Yu LR, Shulewitz MJ, Park CJ, Park JE, Cho YW, Veenstra TD, Thorner J, Lee KS (2004) Coupling morphogenesis to mitotic entry. Proc Natl Acad Sci USA 101:4124–4129

    Article  PubMed  CAS  Google Scholar 

  116. Hanrahan J, Snyder M (2003) Cytoskeletal activation of a checkpoint kinase. Mol Cell 12:663–673

    Article  PubMed  CAS  Google Scholar 

  117. Szkotnicki L, Crutchley JsM, Zyla TR, Bardes ESG, Lew DJ (2008) The checkpoint kinase Hsl1p is activated by Elm1p-dependent phosphorylation. Mol Biol Cell 19:4675–4686

    Article  PubMed  CAS  Google Scholar 

  118. Luedeke C, Frei SB, Sbalzarini I, Schwarz H, Spang A, Barral Y (2005) Septin-dependent compartmentalization of the endoplasmic reticulum during yeast polarized growth. J Cell Biol 169:897–908

    Article  PubMed  CAS  Google Scholar 

  119. Shcheprova Z, Baldi S, Frei SB, Gonnet G, Barral Y (2008) A mechanism for asymmetric segregation of age during yeast budding. Nature 454:U728–U764

    Google Scholar 

  120. Neufeld TP, Rubin GM (1994) The Drosophila Peanut gene is required for cytokinesis and encodes a protein similar to yeast putative bud neck filament proteins. Cell 77:37–371

    Article  Google Scholar 

  121. Zhu M, Wang FS, Yan F, Yao PY, Du J, Gao XJ, Wang XW, Wu Q, Ward T, Li JJ, Kioko S, Hu RM, Xie W, Ding X, Yao XB (2008) Septin 7 interacts with centromere-associated protein E and is required for its kinetochore localization. J Biol Chem 283:18916–18925

    Article  PubMed  CAS  Google Scholar 

  122. Joo E, Surka MC, Trimble WS (2007) Mammalian SEPT2 is required for scaffolding nonmuscle myosin II and its kinases. Dev Cell 13:677–690

    Article  PubMed  CAS  Google Scholar 

  123. Kremer BE, Haystead T, Macara IG (2005) Mammalian septins regulate microtubule stability through interaction with the microtubule-binding protein MAPP-1. Mol Biol Cell 16:4648–4659

    Article  PubMed  CAS  Google Scholar 

  124. Sisson JC, Field C, Ventura R, Royou A, Sullivan W (2000) Lava lamp, a novel peripheral Golgi protein, is required for Drosophila melanogaster cellularization. J Cell Biol 151:905–917

    Article  PubMed  CAS  Google Scholar 

  125. Spiliotis ET, Hunt SJ, Hu Q, Kinoshita M, Nelson WJ (2008) Epithelial polarity requires septin coupling of vesicle transport to polyglutamylated microtubules. J Cell Biol 180:295–303

    Article  PubMed  CAS  Google Scholar 

  126. Huang YW, Yan M, Collins RF, DiCiccio JE, Grinstein S, Trimble WS (2008) Mammalian septins are required for phagosome formation. Mol Biol Cell 19:1717–1726

    Article  PubMed  CAS  Google Scholar 

  127. Xie YL, Vessey JP, Konecna A, Dahm R, Macchi P, Kiebler MA (2007) The GTP-binding protein septin 7 is critical for dendrite branching and dendritic-spine morphology. Curr Biol 17:1746–1751

    Article  PubMed  CAS  Google Scholar 

  128. Tada T, Simonetta A, Batterton M, Kinoshita M, Edbauer D, Sheng M (2007) Role of septin cytoskeleton in spine morphogenesis and dendrite development in neurons. Curr Biol 17:1752–1758

    Article  PubMed  CAS  Google Scholar 

  129. Schmidt K, Nichols BJ (2004) A barrier to lateral diffusion in the cleavage furrow of dividing mammalian cells. Curr Biol 14:1002–1006

    Article  PubMed  CAS  Google Scholar 

  130. Steels JD, Estey MR, Froese CD, Reynaud D, Pace-Asciak C, Trimble WS (2007) Sept12 is a component of the mammalian sperm tail annulus. Cell Motil Cytoskeleton 64:794–807

    Article  PubMed  CAS  Google Scholar 

  131. Beites CL, Xie H, Bowser R, Trimble WS (1999) The septin CDCrel-1 binds syntaxin and inhibits exocytosis. Nat Neurosci 2:434–439

    Article  PubMed  CAS  Google Scholar 

  132. Beites CL, Campbell KA, Trimble WS (2005) The septin Sept5/CDCrel-1 competes with alpha-SNAP for binding to the SNARE complex. Biochem J 385:347–353

    Article  PubMed  CAS  Google Scholar 

  133. Taniguchi M, Taoka M, Itakura M, Asada A, Saito T, Kinoshita M, Takahashi M, Isobe T, Hisanaga S (2007) Phosphorylation of adult type Sept5 (CDCrel-1) by cyclin-dependent kinase 5 inhibits interaction with syntaxin-1. J Biol Chem 282:7869–7876

    Article  PubMed  CAS  Google Scholar 

  134. Dent J, Kato K, Peng XR, Martinez C, Cattaneo M, Poujol C, Nurden P, Nurden A, Trimble WS, Ware J (2002) A prototypic platelet septin and its participation in secretion. Proc Natl Acad Sci USA 99:3064–3069

    Article  PubMed  CAS  Google Scholar 

  135. Tsang CW, Fedchyshyn M, Harrison J, Xie H, Xue J, Robinson PJ, Wang LY, Trimble WS (2008) Superfluous role of mammalian septins 3 and 5 in neuronal development and synaptic transmission. Mol Cell Biol 28:7012–7029

    Article  PubMed  CAS  Google Scholar 

  136. Rittmeyer EN, Daniel S, Hsu SC, Osman MA (2008) A dual role for IQGAP1 in regulating exocytosis. J Cell Sci 121:391–403

    Article  PubMed  CAS  Google Scholar 

  137. Tanaka-Takiguchi Y, Kinoshita M, Takiguchi K (2009) Septin-mediated uniform bracing of phospholipid membranes. Curr Biol 19:140–145

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We apologize to our colleagues for having to omit many references in this review, owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, L., Yu, W., Wu, Y. et al. The evolution, complex structures and function of septin proteins. Cell. Mol. Life Sci. 66, 3309–3323 (2009). https://doi.org/10.1007/s00018-009-0087-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0087-2

Keywords

Navigation