Skip to main content
Log in

Projectin is an invertebrate connectin (titin): Isolation from crayfish claw muscle and localization in crayfish claw muscle and insect flight muscle

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

A filamentous protein was isolated from crayfish claw muscle. This protein had physiochemical properties very similar to vertebrate skeletal muscle connectin (titin), although its apparent molecular mass (∼ 1200 kDa) was considerably lower than that of connectin (∼ 3000 kDa). Polyclonal as well as monoclonal antibodies against chicken skeletal muscle connectin reacted with the 1200 kDa protein from crayfish claw muscle. Conversely, polyclonal antibodies against crayfish 1200 kDa protein crossreacted with chicken connectin. Circular dichroic spectra indicated the abundance ofβ-sheet structure (∼ 60 %). Low-angle shadowed images showed filamentous structures (0.2 ∼ 0.5μm) by electron microscopy. Proteolysis of the 1200 kDa protein by α-chymotrypsin or V8 protease rapidly resulted in formation of 1000 kDa or 1100 and 800 kDa peptides. The amino acid composition was very similar to those of vertebrate connectins and of honeybee flight muscle projectin. Based on the molecular weight and amino acid composition, the 1200 kDa protein is regarded to be crayfish projectin.

Immunofluorescence and immunoelectron microscopy revealed that crayfish projectin was localized in the A/I junction area and A-band except for its centre region in crayfish claw muscles. Polyclonal antibodies against crayfish claw muscle projectin reacted with 1200 kDa projectin of honeybee and beetle flight muscle. A monoclonal antibody against chicken skeletal muscle connectin also reacted with honeybee and beetle projectin. Immunoelectron microscopic observations revealed that anti-crayfish projectin antibodies bound the connecting filaments linking the Z-line and the thick filaments up to the M-line of honeybee muscle sarcomere. Anti-crayfish projectin antibodies bound the I-band region near the Z-line of beetle flight muscle.

It is concluded that the 1200 kDa projectin from crayfish claw muscle is an invertebrate connectin (titin). Recent work with locust flight muscle mini-titin (Nave & Weber, 1990) is in good agreement with the present study, except that the isolated minititin estimated as 600 kDa appears to be a proteolytic product (∼ 1100 kDa) of the parent molecule (∼ 1200 kDa).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashhurst, D. E. &Cullen, M. J. (1977) The structure of fibrillar flight muscle. InInsect Flight Muscle (edited byTregear R. T.). pp 9–14. Amsterdam: Elsevier, North Holland.

    Google Scholar 

  • Benian, G. M., Kiff, J. E., Neckelmann, N., Moerman, D. G. &Waterston, R. H. (1989) Sequence of an unusually large protein implicated in regulation of myosin activity inC.elegans. Nature,342, 45–50.

    Google Scholar 

  • Bullard, B., Hammond, K. S. &Luke, B. M. (1977) The site of paramyosin in insect flight muscle and the presence of an unidentified protein between myosin filaments and Z line.J. Mol. Biol. 115, 417–40.

    Google Scholar 

  • Fairbanks, G., Steck, T. L. &Wallach, D. F. H. (1971) Electrophoretic analysis of the major polypeptides of the. human erythrocyte membrane.Biochemistry,10, 2606–17.

    PubMed  Google Scholar 

  • Funatsu, T., Higuchi, H. &Ishiwata, S. (1990) Elastic filaments in skeletal muscle revealed by selective removal of thin filaments with plasma gelsolin.J. Cell. Biol.,110, 53–62.

    Google Scholar 

  • Fürst, D. O., Osborn, M., Nave, R. &Weber, K. (1988) The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: a map of ten nonrepetitive epitopes starting at the Z line extends close to the M line.J. Cell Biol.,106, 1563–72.

    PubMed  Google Scholar 

  • Horowits, R., Maruyama, K. &Podolsky, R. J. (1989) Elastic behaviour of connectin filaments during thick filament movement in activated skeletal muscle.J. Cell Biol.,109, 2169–76.

    PubMed  Google Scholar 

  • Hu, D. H., Kimura, S. &Maruyama, K. (1986) Sodium dodecyl sulfate gel electrophoresis studies of connectin-like high molecular weight proteins of various types of vertebrate and invertebrate muscles.J. Biochem. 99, 1485–92.

    Google Scholar 

  • Hu, D. H., Kimura, S. &Maruyama, K. (1989) Myosin oligomers as the molecular mass standard in the estimation of molecular mass of nebulin (800 kDa) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.Biomed, Res. 10, 165–8.

    Google Scholar 

  • Itoh, Y., Hu, D. H., Ohashi, K., Kimura, S. &Maruyama, K. (1987) Lamprey connectin.Zool. Sci. 4, 379–80.

    Google Scholar 

  • Itoh, Y., Suzuki, T., Kimura, S., Ohashi, K., Higuchi, H., Sawada, H., Shimizu, T., Shibata, M. &Maruyama, K. (1988) Extensible and less-extensible domains of connectin filaments in stretched vertebrate skeletal muscle sarcomeres as detected by immunofluorescence and immunoelectron microscopy using monoclonal antibodies.J. Biochem. 104, 504–8.

    PubMed  Google Scholar 

  • Jahromi, S. S. &Atwood, H. L. (1969) Correlation of structure, speed of contraction, and total tension in fast and slow abdominal muscle fibers of the lobster.J. Exp. Zool. 171, 25–38.

    PubMed  Google Scholar 

  • Jahromi, S. S. &Atwood, H. L. (1971) Structural and contractile properties of lobster leg-muscle fibers.J. Exp. Zool. 176, 475–86.

    PubMed  Google Scholar 

  • Kimura, S. &Maruyama, K. (1983) Preparation of native connectin from chicken breast muscle.J. Biochem. 94, 2083–5.

    PubMed  Google Scholar 

  • Kimura, S. &Maruyama, K. (1989) Isolation ofα-connectin, an elastic protein, from rabbit skeletal muscle.J. Biochem. 106, 952–4.

    PubMed  Google Scholar 

  • Kimura, S., Yoshidomi, H. &Maruyama, K. (1984) Proteolytic fragments of connectin cause aggregration of myosin filaments but not of actin filaments.J. Biochem. 96, 1947–50.

    PubMed  Google Scholar 

  • Kurzban, G. P. &Wang, K. (1988) Giant polypeptides of skeletal muscle titin: sedimentation equilibrium in guanidine hydrochloride.Biochem. Biophys. Res. Comm. 150, 1155–61.

    PubMed  Google Scholar 

  • Locker, R. H. &Wild, D. J. C. (1986) A comparative study of high molecular weight proteins in various types of muscle across the animal kingdom.J. Biochem. 99, 1473–84.

    PubMed  Google Scholar 

  • Maruyama, K. (1986) Connectin, an elastic filamentous protein of striated muscle.Int. Rev. Cytol. 104, 81–114.

    PubMed  Google Scholar 

  • Maruyama, K., Hu, D. H., Suzuki, T. &Kimura, S. (1987) Binding of actin filaments to connectin.J. Biochem. 101, 1339–46.

    PubMed  Google Scholar 

  • Maruyama, K., Itoh, Y. &Arisaka, F. (1986) Circular dichroism spectra show abundance ofβ-sheet structure in connectin, a muscle elastic protein.FEBS letters 202, 353–5.

    PubMed  Google Scholar 

  • Maruyama, K., Kimura, S., Ohashi, K. &Kuwano, Y. (1981) Connectin, an elastic protein of muscle. Identification of ‘titin’ with connectin.J. Biochem. 89, 701–9.

    PubMed  Google Scholar 

  • Maruyama, K., Kimura, S., Yoshidomi, H., Sawada, H. &Kikuchi, M. (1984) Molecular size and shape ofβ- connectin, an elastic protein of striated muscle.J. Biochem. 95, 1423–33.

    PubMed  Google Scholar 

  • Maruyama, K., Matsuno, A., Higuchi, H., Shimaoka, S., Kimura, S. &Shimizu, T. (1989) Behaviour of connectin (titin) and nebulin in skinned muscle fibres released after extreme stretch as revealed by immunoelectron microscopy.J. Muscle Res. Cell Motil. 10, 350–9.

    PubMed  Google Scholar 

  • Maruyama, K., Yoshioka, T., Higuchi, H., Ohashi, K., Kimura, S. &Natori, R. (1985) Connectin filaments link thick filaments and Z lines in frog skeletal muscle as revealed by immunoelectron microscopy.J. Cell Biol.,101, 2167–72.

    PubMed  Google Scholar 

  • Matsuno, A., Takano-Ohmuro, H., Itoh, Y., Matsuura, T., Shibata, M., Nakae, H., Kaminuma, T. &Maruyama, K. (1989) Anti-connectin monoclonal antibodies that react with the unc-22 gene product bind dense bodies ofCaenorhabditis (nematode) bodywall muscle cells.Tissue & Cell. 21, 495–505.

    Google Scholar 

  • Murayama, T., Nakauchi, Y., Kimura, S. &Maruyama, K. (1989) Binding of connectin to myosin filaments.J. Biochem. 105, 323–6.

    PubMed  Google Scholar 

  • Nave, R. &Weber, K. (1990) A myofibrillar protein of insect muscle related to vertebrate titin connects Z-band and A-band: purification and molecular characterization of invertebrate mini-titin.J. Cell Sci. 95, 535–44.

    PubMed  Google Scholar 

  • Perry, S. V. (1953) Preparation of myosin.Methods Enzymol. 2, 582–8.

    Google Scholar 

  • Pringle, J. W. S. (1977) The mechanical characterization of insect fibrillar muscle. InInsect Flight Muscle (edited byTregear, R. T.). pp. 177–96. Amsterdam: Elsevier.

    Google Scholar 

  • Provencher, S. W. &Glöckner, J. (1981) Estimation of globular protein secondary structure from circular dichroism.Biochemistry 20, 33–7.

    PubMed  Google Scholar 

  • Saide, J. D. (1981) Identification of a connecting filament protein in insect fibrillar flight muscle.J. Mol. Biol. 153, 661–79.

    PubMed  Google Scholar 

  • Saide, J. D., Chin-Bow, S., Hogan-Sheldon, J., BusquetsTurner, L., Vigoreaux, J. O., Valgeirsdottir, K. &Parde, M. L. (1989) Characterization of components of Zbands in the fibrillar flight muscle ofDrosophila melanogaster.J. Cell Biol. 109, 2157–67.

    PubMed  Google Scholar 

  • Smith, D. S. (1961) The organization of the flight muscle in a dragonfly,Aeshna sp. (Odonanta).J. Biophys. Biochem. Cytol. 11, 119–145.

    PubMed  Google Scholar 

  • Spudich, J. A. &Watt, S. (1971) The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin.J. Biol. Chem. 246, 4866–71.

    Google Scholar 

  • Towbin, H., Staehelin, T. &Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.Proc. Nail. Acad. Sci., U.S.A. 76, 4350–4.

    Google Scholar 

  • Trinick, J., Knight, P. &Whiting, A. (1984) Purification and properties of native titin.J. Mol. Biol. 180, 331–56.

    PubMed  Google Scholar 

  • Trombitás, C. &Tigyi-Sebes, A. (1977) Fine structure and mechanical properties of insect muscle gels to nitrocellulose sheets: procedure and some applications. InInsect Flight Muscle (edited byTregear, R. T.). pp. 79–90. Amsterdam: Elsevier.

    Google Scholar 

  • Wang, K., Ramirez-Mitchell, R. &Palter, D. (1984) Titin is an extraordinarily long, flexible and slender myofibrillar protein.Proc. Natl. Acad. Sci. U.S.A. 81, 3685–9.

    PubMed  Google Scholar 

  • Weber, K. &Osborn, M. (1969) The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis.J. Biol. Chem. 244, 4406–12.

    PubMed  Google Scholar 

  • Whiting, A., Wardale, J. &Trinick, J. (1989) Does titin regulate the length of muscle thick filaments?J. Mol. Biol. 205, 263–8.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, D.H., Matsuno, A., Terakado, K. et al. Projectin is an invertebrate connectin (titin): Isolation from crayfish claw muscle and localization in crayfish claw muscle and insect flight muscle. J Muscle Res Cell Motil 11, 497–511 (1990). https://doi.org/10.1007/BF01745217

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01745217

Keywords

Navigation