Skip to main content
Log in

Scanning and transmission electron microscopic studies of microvascular pathology in the osmotically impaired blood-brain barrier

  • Published:
Journal of Neurocytology

Summary

The present investigation focused on the structural events occurring in endothelial cells lining the lumina of brain microvessels in rats subjected to a single intracarotid injection of hypertonic 1.8m l (+) arabinose solution with or without intravenous injection of horseradish peroxidase. Blood vessels from cerebral cortex and thalamus were evaluated by transmission and scanning electron microscopy. After short-term exposure (10–12 min) there was widespread flooding of peroxidase into the brain neuropil of the ipsilateral hemisphere. Peroxidase tracer was frequently observed within vesiculo-tubular profiles, and occasionally within widened interendothelial junctional clefts. Partially fragmented, necrotic endothelial cells appeared to be in the process of desquamation. Individual endothelial cells appeared to be shrunken with widened interendothelial spaces. Some healthy endothelial cells appeared to be involved in repair processes, manifested by the extension of thin cellular processes towards the area of vessel injury. Other pathological alterations included a conspicuous increase in the number of endothelial cell microvilli, large crater-like invaginations of the endothelial plasma membranes and muscular blood vessels in the process of spasm. We also observed a platelet reaction with or without endothelial cell necrosis and attached microthrombi in some arterial segments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Balin, B. J., Broadwell, R. D. &Salcman, M. (1987) Tubular profiles do not form transendothelial channels through the blood-brain barrier.Journal of Neurocytology 16, 721–35.

    Google Scholar 

  • Beggs, J L. &Waggener, J. D. (1976) Transendothelial vesicular transport of protein following compression injury to the spinal cord.Laboratory Investigation 34, 428–39.

    Google Scholar 

  • Brightman, M. W. (1989) The anatomic basis of the blood-brain barrier. InImplications of the blood-brain barrier and its manipulation (edited byNeuwelt, E. A.) pp. 53–83., New York: Plenum Publishing Corp.

    Google Scholar 

  • Brightman, M. W., Hori, M., Rapoport, S. I., Reese, T. S. &Westergaard, E. (1973) Osmotic opening of tight junctions in cerebral endothelium.Journal of Comparative Neurology 152, 317–25.

    Google Scholar 

  • Broadwell, R. D. (1989) Transcytosis of macromolecules through the blood-brain barrier: a cell biological perspective and critical appraisal.Acta Neuropathologica 79, 117–28.

    Google Scholar 

  • Cannella, B., Cross, A. H. &Raine, C. S. (1991) Adhesion-related molecules in the central nervous system. Upregulation correlates with inflammatory cell influx during relapsing experimental autoimmune encephalomyelitis.Laboratory Investigation 65, 23–31.

    Google Scholar 

  • Cross, A. E. &Raine, C. S. (1991) Central nervous system endothelial cell-polymorphonuclear cell interactions during autoimmune demyelination.American Journal of Pathology 139, 1401–9.

    Google Scholar 

  • Farrell, C. L. &Shivers, R. R. (1984) Capillary junctions of the rat are not affected by osmotic opening of the blood-brain barrier.Acta Neuropathologica 63, 179–89.

    Google Scholar 

  • Garcia, J. H., Liu, K. F., Yoshida, Y., Lian, J., Chen, S. &Del Zoppo, G. J. (1994) Influx of leukocytes and platelets in an evolving brain infarct (Wistar rat).American Journal of Pathology 144, 188–99.

    Google Scholar 

  • Hiesiger, E. M., Voorhies, R. M., Basler, M. A., Lipschutz, B. S., Posner, J. B. &Shapiro, W. R. (1986) Opening of the blood-brain and blood-tumor barriers in experimental rat brain tumors: the effect of intracarotid hyperosmolar mannitol on capillary permeability and blood flow.Annals of Neurology 19, 50–9.

    Google Scholar 

  • Houthoff, H. J. &Go, K. G. (1980) Endogenous versus exogenous protein tracer passage in blood-brain barrier damage. InAdvances in Neurology (edited byCervos-Navarro, J. &Ferszt, R.) pp. 75–81. New York: Raven Press.

    Google Scholar 

  • Houthoff, H. J., Go, K. G. &Gerrits, P. O. (1982) The mechanisms of blood-brain barrier impairment by hyperosmolar perfusion. An electron cytochemical study comparing exogenous HRP and endogenous antibody to HRP as tracers.Acta Neuropathologica 56, 99–112.

    Google Scholar 

  • Hughes, J. T. (1987) Endothelial changes in baboon cerebral arteries after experimental arterial spasm: a study using scanning electron microscopy. InStroke and Microcirculation (edited byCervos-Navarro, J. &Ferszt, R.) pp. 487–94. New York: Raven Press.

    Google Scholar 

  • Kumar, K., White, B., Krause, G., Garritano, A. M. &Koestner, A. (1987) Cerebral endothelium microvilli following global brain ischemia in dogs.Brain Research 421, 309–14.

    Google Scholar 

  • Lossinsky, A. S. &Wisniewski, H. M. (1986) A comparative ultrastructural study of endothelial cell tubular structures from injured mouse blood-brain barrier and normal hepatic sinusoids demonstrated after perfusion fixation with osmium tetroxide.Microvascular Research 31, 333–4.

    Google Scholar 

  • Lossinsky, A. S., Garcia, J. H., Iwanowski, L. &Lightfoote, W. E., Jr. (1979) New ultrastructural evidence for a protein transport system in endothelial cells of gerbil brains.Acta Neuropathologica 47, 105–10.

    Google Scholar 

  • Lossinsky, A. S., Song, M. J. &Wisniewski, H. M. (1989) High voltage electron microscopic studies of endothelial cell tubular structures in the mouse blood-brain barrier following brain trauma.Acta Neuropathologica 77, 480–8.

    Google Scholar 

  • Lossinsky, A. S., Pluta, R., Song, M. J., Badmajew, V., Moretz, R. C. &Wisniewski, H. M. (1991) Mechanisms of inflammatory cell attachment in chronic relapsing experimental allergic encephalomyelitis: a scanning and high-voltage electron microscopic study of the injured mouse blood-brain barrier.Microvascular Research 41, 299–310.

    Google Scholar 

  • Macdonald, R. L., Weir, B. K. A., Chen, M. H. &Grace, M. G. A. (1991) Scanning electron microscopy of normal and vasospastic monkey cerebrovascular smooth muscle cells.Neurosurgery 29, 544–50.

    Google Scholar 

  • Nag, S., Robertson, D. M. &Dinsdale, H. B. (1977) Cerebral cortical changes in acute experimental hypertension. An ultrastructural study.Laboratory Investigation 36, 150–61.

    Google Scholar 

  • Neuwelt, E. A., Goldman, D., Dahlborg, S. A., Crossen, J., Ramsey, F., Roman-Goldstein, S., Braziel, R. &Dana, B. (1991) Primary CNS lymphoma treated with osmotic blood-brain barrier disruption: prolonged survival and preservation of cognitive function.Journal Clinical Oncology 9, 1580–90.

    Google Scholar 

  • Oldendorf, W. H. &Brown, W. J. (1975) Greater number of capillary endothelial cell mitochondria in brain than in muscle.Proceedings for the Society of Experimental Biology and Medicine 149, 736–8.

    Google Scholar 

  • Oldendorf, W. H., Cornford, M. E. &Brown, W. J. (1977) The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat.Annals of Neurology 1, 409–17.

    Google Scholar 

  • Peters, A., Palay, S. L. &Webster, H. de F. (1976) Blood vessels. InThe Fine Structure of the Nervous System: The Neurons and Supporting Cells (edited byPeters, A., Palay, S. L. &Webster, H. de F.) pp. 295–305. Philadelphia: W. B. Saunders Co.

    Google Scholar 

  • Pluta, R., Lossinsky, A. S., Mossakowski, M. J., Faso, L. &Wisniewski, H. M. (1991) Reassessment of a new model of complete cerebral ischemia in rats. Methods of induction of clinical death, pathophysiology and cerebrovascular pathology.Acta Neuropathologica 83, 1–11.

    Google Scholar 

  • Pluta, R., Lossinsky, A. S., Walski, M., Wisniewski, H. M. &Mossakowski, M. J. (1994) Platelet occlusion phenomenon after short- and long-term survival following complete cerebral ischemia in rats produced by cardiac arrest.Journal of Brain Research 35, 463–71.

    Google Scholar 

  • Raine, C. S., Cannella, B., Duijvestljn, A. M. &Cross, A. H. (1990) Homing to central nervous system vasculature by antigen-specific lymphocytes. II. Lymphocyte/endothelial cell adhesion during the initial stages of autoimmune demyelination.Laboratory Investigation 63, 476–89.

    Google Scholar 

  • Rapoport, S. I., Hori, M. &Klatzo, I. (1972) Testing of a hypothesis for osmotic opening of the blood-brain barrier.American Journal of Physiology 223, 323–31.

    Google Scholar 

  • Reese, T. S. &Karnovsky, M. J. (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase.Journal of Cell Biology 34, 207–17.

    Google Scholar 

  • Rosenblum, W. I. (1986) Biology of disease. Aspects of endothelial malfunction and function in cerebral microvessels.Laboratory Investigation 55, 252–8.

    Google Scholar 

  • Shivers, R. R. (1979) The effect of hyperglycemia on brain capillary permeability in the lizard,Anolis carolinensis. A freeze-fracture analysis of blood-brain barrier pathology.Brain Research 170, 509–22.

    Google Scholar 

  • Sholley, M. M., Gimbrone, M. A. &Cotran, R. S. (1977) Cellular migration and replication in endothelial regeneration.Laboratory Investigation 36, 18–25.

    Google Scholar 

  • Simionescu, N., Simionescu, M. &Palade, G. E. (1975) Permeability of muscle capillaries to small heme-peptides. Evidence for the existence of patent transendothelial channels.Journal of Cell Biology 64, 586–607.

    Google Scholar 

  • Trump, B. F., Mcdowell, E. M. &Arstila, A. U. (1980) Cellular reaction of injury. InPrinciples of Pathobiology (edited byHill, R. B. Jr &Lavia, M. F.) pp. 20–103. New York: Oxford University Press.

    Google Scholar 

  • Vorbrodt, A. W. (1988) Ultrastructural cytochemistry of the blood-brain barrier.Progress in Histochemistry and Cytochemistry 18, 1–99.

    Google Scholar 

  • Vorbrodt, A. W., Dobrogowska, D. H., Tarnawski, M. &Lossinsky, A. S. (1994) A quantitative immunocytochemical study of the osmotic opening of the blood-brain barrier to endogenous albumin.Journal of Neurocytology 23, 792–800.

    Google Scholar 

  • Vorbrodt, A. W., Lossinsky, A. S., Dobrogowska, D. H. &Wisniewski, H. M. (1993) Cellular mechanisms of the blood-brain barrier (BBB) opening to albumin-gold complex.Histology Histopathology 8, 51–61.

    Google Scholar 

  • Wisniewski, H. M. &Lossinsky, A. S. (1991) Structural and functional aspects of the interaction of inflammatory cells with the blood-brain barrier in experimental brain inflammation.Brain Pathology 1, 89–96.

    Google Scholar 

  • Wisniewski, H. M., Pluta, R., Lossinsky, A. S. &Mossakowski, M. J. (1995) Ultrastructural studies of cerebral vascular spasm after cardiac arrest-produced global ischemia in rats.Acta Neuropathologica, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lossinsky, A.S., Vorbrodt, A.W. & Wisniewski, H.M. Scanning and transmission electron microscopic studies of microvascular pathology in the osmotically impaired blood-brain barrier. J Neurocytol 24, 795–806 (1995). https://doi.org/10.1007/BF01191215

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01191215

Keywords

Navigation