Skip to main content
Log in

Thick myofilament mass determination by electron scattering measurements with the scanning transmission electron microscope

  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

An accurate value for mass/length of thick myofilaments is required to establish a limit for the maximum number of myosin molecules per crossbridge repeat. The mass/length of the crossbridge regions of desalted thick myofilaments from insect flight muscle (Lethocerus andMusca) and rabbit psoas has been measured with a computer-linked STEM by comparing the electron scattering signal per unit length of unstained thick filaments with that from TMV particles in the same image. Filament preparation was aided by limited digestion of myofibrils to remove Z bands using calcium-activated factor (CAF) from rabbit skeletal muscle; SDS gels showed that this selective protease spared myosin and tended to spare paramyosin but removed C protein.Lethocerus filaments prepared by the CAF procedure were 20–25% heavier per unit length than those prepared by conventional (simple) shearing, and retained a clear and generally uniform 14.5 nm crossbridge repeat by negative staining.

We have expressed mass/length of thick filaments as myosin equivalents (mol. wt 0.470 × 106) per crown (that is, the 14.5 nm insect or 14.3 nm vertebrate repeat along thick filaments). TMV standards, calculated to weigh 0.1304×106 daltons nm−1 and thus equivalent to 4.02 myosins per 14.5 nm, were uniform to ±3%s.d. for 73 particles after normalizing means for each different image field. After subtracting the known paramyosin content from insect measurements (11% for waterbug, 2% for the housefly), but making no C protein correction to rabbit measurements, the following results were obtained:Lethocerus (all) 4.19±0.50 (243 filaments);Lethocerus (CAF prepns) 4.40±0.44 (145 filaments);Musca (all CAF) 4.14±0.37 (57 filaments); rabbit (all CAF) 2.86±0.34 (75 filaments).

These values favour the lowest integral number of myosins per crown among currently competing models of thick filament structure. The rabbit value agrees with several previous estimates, including the STEM measurements of Lamvik, which indicated three rather than four myosins/crown. The insect flight myofilament value of four forces re-evaluation of previous estimates by quantitative gels and quantitative microscopy of whole fibrils which had favoured six myosins/crown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • ABBOTT, R. H. & CAGE, P. E. (1978) Periodicity in insect flight muscle stretch activation.J. Physiol. 231, 195–208.

    Google Scholar 

  • AUST, S., HINKEL, P. & BEINBRECH, G. (1980) Evidence for four-stranded myosin filaments in honey bee flight muscle.J. Musc. Res. Cell Motil. 1, 448.

    Google Scholar 

  • BRADFORD, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Analyt. Biochem. 72, 248–54.

    Google Scholar 

  • BULLARD, B., BELL, J., CRAIG, R. & LEONARD, K. (1980) An actin-like protein from insect muscle.J. Musc. Res. Cell Motil,1, 194–5.

    Google Scholar 

  • BULLARD, B., LUKE, B., & WINKELMAN, L. (1973) The paramyosin of insect flight muscle.J. molec. Biol. 359–67.

  • BULLARD, B. & REEDY, M. K. (1973) How many myosins per cross-bridge? II. Flight muscle myosin from the blowfly,Sarcophaga bullata.Cold Spring Harb. Symp. quant. Biol. 37, 423.

    Google Scholar 

  • BULLARD, B. & SAINSBURY G. M. (1977) The proteins in the Z line of insect flight muscle.Biochem. J. 161, 399–403.

    Google Scholar 

  • BUSCH, W. A., STROMER, M. H., GOLL, D. E. & SUZUKI, A. (1972) Ca2+-specific removal of Z lines from rabbit skeletal muscle.J. Cell Biol. 52, 367–81.

    Google Scholar 

  • CHAPLAIN, R. A. & TREGEAR, R. T. (1966) The mass of myosin per cross-bridge in insect fibrillar flight muscle.J. molec. Biol. 21, 275–80.

    Google Scholar 

  • DAYTON, W. R., REVILLE, W. J., GOLL, D. E. & STROMER, M. H. (1976) A Ca2+-activated protease possibly involved in myofibrillar protein turnover. Partial characterization of the purified enzyme.Biochemistry 15, 2159–67.

    Google Scholar 

  • EMES, C. H. & ROWE, A. J. (1978) Frictional properties and molecular weight of native and synthetic myosin filaments from vertebrate skeletal muscle.Biochim. Biophys. Acta 537, 125–44.

    Google Scholar 

  • ETLINGER, J. D., ZAK, R. & FISCHMAN, D. A. (1976) Compositional studies of myofibrils from rabbit striated muscle.J. Cell Biol. 68, 123–41.

    Google Scholar 

  • GOODE, M. D. (1972) Ultrastructure and contractile properties of isolated myofibrils and myofilaments fromDrosophila flight muscle.Trans. Am. Microsc. Soc. 91, 182–94.

    Google Scholar 

  • GOLL, D. E., STROMER, M. H., ROBSON, R. M., LUKE, B. M. & HAMMOND, K. S. (1977) Asynchronous flight muscle. InInsect Flight Muscle (edited by TREGEAR, R. T.), pp, 15–40. Amsterdam: North Holland.

    Google Scholar 

  • GREGORY, D. W. & PIRIE, B. J. S. (1973) Wetting agents for biological electron microscopy. I. General considerations and negative staining.J. Microsc. 99, 251–65.

    Google Scholar 

  • HALL, C. E. (1958) Lengths of tobacco mosaic virus from electron microscopy.J. Am. Chem. Soc. 80, 2556–7.

    Google Scholar 

  • HART, R. E. (1961) Surface structure of tobacco mosaic virus.J. molec. Biol 3, 701–2.

    Google Scholar 

  • HPOLMES, K. C. (1980) Protein-RNA interactions during the assembly of tobacco mosaic virus.TIBS, Jan. 1980, 4–7.

  • JONES, A. V. & LEONARD, K. R. (1978) Scanning transmission electron microscopy of unstained biological sections.Nature 271, 659–60.

    Google Scholar 

  • KING, L. & LEBERMAN, R. (1973) Derivatisation of carboxyl groups of tobacco mosaic virus with cystamine.Biochim. Biophys. Acta 322, 279–93.

    Google Scholar 

  • KLUG, A. (1972) Assembly of tobacco mosaic virus.Fed. Proc. 31, 30–42.

    Google Scholar 

  • KNIGHT, C. A. & WOODY, B. R. (1958) Phosphorus content of tobacco mosaic virus.Archs Biochem. Biophys 78, 460–67.

    Google Scholar 

  • LAMVIK, M. K. (1978) Muscle thick filament mass measured by electron scattering.J. molec. Biol. 122, 55–68.

    Google Scholar 

  • LEVINE, R. J. C., ELFVIN, M., DEWEY, M. M. & WALCOTT, B. (1976) Paramyosin in invertebrate muscles. II. Content in relation to structure and function.J. Cell Biol. 71, 273–9.

    Google Scholar 

  • MAW, M. M. & ROWE, A. J. (1980) Fraying of A-filaments into three subfilaments.Nature 286, 412–4.

    Google Scholar 

  • MILLMAN, B. M. & BENNETT, P. M. (1976) Structure of the cross-striated adductor muscle of the scallop.J. molec. Biol. 103, 439–67.

    Google Scholar 

  • MORIMOTO, K. & HARRINGTON, W. F. (1973) Isolation and composition of thick filaments from rabbit skeletal muscle.J. molec. Biol. 77, 165–75.

    Google Scholar 

  • MORIMOTO, K. & HARRINGTON W. F. (1974a) Substructure of the thick filament of vertebrate striated muscle.J. molec. Biol. 83, 83–97.

    Google Scholar 

  • MORIMOTO, K. & HARRINGTON, W. F. (1974b) Evidence for structural changes in vertebrate thick filaments induced by calcium.J. molec. Biol. 88, 693–709.

    Google Scholar 

  • PEPE, F. A. & DRUCKER, B. (1979) The myosin filament. VI. Myosin content.J. molec. Biol. 130, 379–93.

    Google Scholar 

  • POTTER, J. D. (1974) The concent of troponin, tropomyosin, actin and myosin in rabbit skeletal muscle myofibrils.Archs Biochem. Biophys. 162, 436–41.

    Google Scholar 

  • REEDY, M. K., ETLINGER, J. D., RABINOWITZ, M., FISCHMAN, D. A. & ZAK, R. (1975) Removal of Z-lines and α-actinin from isolated myofibrils by a calcium-activated neutral protease.J. biol. Chem. 250, 4278–84.

    Google Scholar 

  • REEDY, M. K. (1968) Ultrastructure of insect flight muscle. I. Screw sense and structural grouping in the rigor cross-bridge lattice.J. molec. Biol. 31, 155–76.

    Google Scholar 

  • REEDY, M. K., BAHR, G. F. & FISCHMAN, D. A. (1973) How many myosins per cross-bridge? I. Flight muscle myofibrils from the blowfly,Sarcophaga bullata.Cold Spring Harb. Symp. quant. Biol. 37, 397–422.

    Google Scholar 

  • REEDY, M. K. & GARRETT, W. E. (1977) Electron microscope studies ofLethocerus flight muscle in rigor. InInsect Flight Muscle (edited by TREGEAR, R. T.), pp. 115–36. Amsterdam: North-Holland.

    Google Scholar 

  • SQUIRE, J. M. (1973) General model of myosin filament structure. III. Molecular packing arrangements in myosin filaments.J. molec. Biol. 77, 291–323.

    Google Scholar 

  • TREGEAR, R. T. & SQUIRE, J. M. (1973) Myosin content and filament structure in smooth and striated muscle.J. molec. Biol. 77, 279–290.

    Google Scholar 

  • TRINICK, J. & ELLIOTT, A. (1979) Electron microscope studies of thick filaments from vertebrate skeletal muscle.J. molec. Biol. 131, 133–6.

    Google Scholar 

  • TURNER, R. C., GREASER, M. L. & SCHULTZ, E. (1979) Association of myosin with myofibrils.Fed. Proc. 38, 339.

    Google Scholar 

  • USALA, S., ISAACSON, M. & MARTIN, T. (1978) Scanning transmission electron microscopy of unstained nucleosomes.Proc. Ninth Int. Conf. Electron Microsc., Vol. II, pp. 224–225.

    Google Scholar 

  • VALENTINE, R. C., SHAPIRO, B. M. & STADTMAN, E. R. (1968) Regulation of glutamine synthetase. XII. Electron microscopy of the enzyme fromEscherichia coli.Biochemistry 7, 2143–52.

    Google Scholar 

  • WEEDS, A. G. & POPE, B. (1977) Studies on the chymotryptic digestion of myosin. Effects of divalent cations on proteolytic susceptibility.J. molec. Biol. 111, 129–57.

    Google Scholar 

  • WINKELHAHN, J. M. & BEINBRECH, G. (1974) Electron microscope studies on the dissociation of actomyosin by pyrophosphate.Experientia 30, 350–2.

    Google Scholar 

  • WRAY, J. (1979) Filament geometry and the activation of insect flight muscles.Nature 280, 325–6.

    Google Scholar 

  • ZEITLER, E. & BAHR, G. F. (1962) A photometric procedure for weight determination of submicroscopic particles, quantitative electron microscopy.J. appl. Phys. 33, 847–53.

    Google Scholar 

  • ZIEGLER, A., HARRISON, S. C. & LEBERMAN, R. (1974) The minor proteins in tomato bushy stunt and turnip crinkle viruses.J. Virol. 59, 509–15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reedy, M.K., Leonard, K.R., Freeman, R. et al. Thick myofilament mass determination by electron scattering measurements with the scanning transmission electron microscope. J Muscle Res Cell Motil 2, 45–64 (1981). https://doi.org/10.1007/BF00712061

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00712061

Keywords

Navigation