Skip to main content
Log in

The harmony of the spheres: inducible nitric oxide synthase and related genes in pancreatic beta cells

  • Review
  • Published:
Diabetologia Aims and scope Submit manuscript

Summary

The radical nitric oxide (NO) is a possible mediator of pancreatic beta-cell damage in insulin-dependent diabetes mellitus (IDDM). NO is produced by the enzyme nitric oxide synthase (NOS), in a reaction where arginine is the main substrate. There are different isoforms of NOS, but in the context of immune mediated beta-cell damage the inducible form of NOS (iNOS) is the most relevant. The beta-cell iNOS is similar and encoded by the same gene on chromosome 17 as the iNOS expressed in macrophages and other nucleated cells. iNOS activation depends on gene transcription and de novo enzyme synthesis, and NO seems to induce a negative feedback on iNOS expression. While iNOS mRNA is induced by interleukin-1Β (IL-1Β) alone in rodent insulin-producing cells, a combination of two (IL-1Β + interferon γ) (IFN-γ) or three (IL-1Β + IFNγ + tumour necrosis factor α) cytokines is required for iNOS activation in human pancreatic islets. The promoter region of the murine iNOS gene has at least 25 binding sites for different transcription factors, and the nuclear transcription factor κB is necessary for cytokine-induced iNOS transcription in both rodent and human pancreatic islets. The nature of other transcription factors relevant for iNOS regulation in these cells remains to be determined. Induction of iNOS is paralleled by induction of several other cytokine-dependent genes in beta cells, including argininosuccinate synthetase, cyclooxygenase and manganese superoxide dismutase. Some of these genes may contribute to beta-cell damage, while others are probably involved in beta-cell defence and/or repair. Regulation of iNOS and other related genes in beta cells is complex, and differs in several aspects from that observed in macrophages. There are also important differences in iNOS regulation between rodent and human pancreatic islets. A detailed knowledge of the molecular regulation of these genes in beta cells may be instrumental in the development of new approaches to prevent beta-cell destruction in early IDDM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

iNOS:

Inducible nitric oxide synthase

NO:

nitric oxide

IDDM:

insulin-dependent diabetes mellitus

IL-1Β :

interleukm-1Β

IFNγ:

interferon γ

TNFα:

tumour necrosis factor α

NF-κB:

nuclear transcription factor κB

IκB:

inhibitor of NF-κB

γ-IRE:

interferon γ response element

NOD:

non-obese diabetic

BB:

bio-breeding

ISRE:

IFNα-stimulated response element

HRE:

hypoxia-responsive element

IRF:

interferon regulatory factor

EMSA:

electrophoretic mobility shift assay

PDTC:

pyrrolidine dithiocarbamate

LPS:

lipopolysac-charides

PKC:

protein kinase C

SAPK/JNK:

stress activated/c-jun NH2-terminal protein kinases

MAPK:

mitogen-activated protein kinase

PAK:

p21 (Cdc 42/Rac) activated kinase

MEK:

MAPKkinase

CAPK:

ceramide-activated protein kinase

JAK:

Janus kinases

ATF/CRE:

activating transcription factor/cyclic AMP responsive element

DAG:

diacylglycerol

PMA:

phorbol 12-myristate 13-acetate

AS:

argininosuccinate synthetase

iCOX:

inducible form of cyclooxygenase

MnSOD:

manganese superoxide dismutase

hsp:

heat shock protein

IL-1R:

interleukin-1 receptor

STAT:

signal transducer and activator of transcription

FAD:

flavin adenine dinucleotide

FMN:

flavin mono-nucleotide

TGF:

transforming growth factor

SSRE:

shear stress response element

TLCK:

tosyl-L-lysine chloromethylketone

GAPDH:

glyceraldehyde-3-phosphate dehydro genase

References

  1. Moncada S, Higgs A (1993) The L-arginine-nitric oxide pathway. N Engl J Med 329: 2002–2012

    Article  PubMed  CAS  Google Scholar 

  2. Lowenstein CJ, Dinerman JL, Snyder SH (1994) Nitric oxide: a physiologic messenger. Ann Intern Med 120: 227–237

    PubMed  CAS  Google Scholar 

  3. Griffith OW, Stuher DJ (1995) Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol 57: 707–736

    Article  PubMed  CAS  Google Scholar 

  4. Xie Q-W, Nathan C (1994) The high-output nitric oxide pathway: role and regulation. J Leukoc Biol 56: 576–582

    PubMed  CAS  Google Scholar 

  5. Nathan CF (1995) Natural resistance and nitric oxide. Cell 82: 873–876

    Article  PubMed  CAS  Google Scholar 

  6. Nussler AK, Di Silvio M, Billiar TR et al. (1992) Stimulation of the nitric oxide synthase pathway in human hepatocytes by cytokines and endotoxin. J Exp Med 176: 261–264

    Article  PubMed  CAS  Google Scholar 

  7. Corbett JA, Sweetland MA, Wang JL, Lancaster JR Jr., McDaniel ML (1993) Nitric oxide mediates cytokine-induced inhibition of insulin secretion by human islets of Langerhans. Proc Natl Acad Sci USA 90: 1731–1735

    Article  PubMed  CAS  Google Scholar 

  8. Eizirik DL, Sandler S, Welsh N et al. (1994) Cytokines suppress human islet function irrespective of their effects on nitric oxide generation. J Clin Invest 93: 1968–1974

    Article  PubMed  CAS  Google Scholar 

  9. Albina JE (1995) On the expression of nitric oxide synthase by human macrophages. Why no NO? J Leukoc Biol 58: 643–649

    PubMed  CAS  Google Scholar 

  10. Bach J-F (1995) Insulin-dependent diabetes mellitus as a Β-cell targeted disease of immunoregulation. J Autoimmun 8: 439–463

    Article  PubMed  CAS  Google Scholar 

  11. Eizirik DL, Sandler S, Palmer JP (1993) Repair of pancreatic beta-cells. A relevant phenomenon in early IDDM? Diabetes 42: 1389–1391

    Google Scholar 

  12. Mandrup-Poulsen T, Helquist S, Wogensen L et al. (1990) Cytokines and free radicals as effector molecules in the destruction of pancreatic beta-cells. Curr Top Microbiol Immunol 164: 169–193

    PubMed  CAS  Google Scholar 

  13. Rabinovitch A (1993) Roles of cytokines in IDDM pathogenesis and islet Β-cell destruction. Diabetes Rev 1: 215–240

    Google Scholar 

  14. Sandler S, Eizirik DL, Svensson C, Strandell E, Welsh M, Welsh N (1991) Biochemical and molecular actions of interleukin-1 on pancreatic Β-cells. Autoimmunity 10: 241–253

    Article  PubMed  CAS  Google Scholar 

  15. Eizirik DL, Sandler S, Welsh N, Bendtzen K, Hellerström C (1994) Nicotinamide decreases nitric oxide production and partially protects human pancreatic islets against the suppressive effects of combinations of cytokines. Autoimmunity 19: 193–198

    Article  PubMed  CAS  Google Scholar 

  16. Rabinovitch A, Suarez-Pinzon WL, Strynadka K et al. (1994) Human islet destruction by cytokines is independent of nitric oxide production. J Clin Endocrinol Metab 79: 058–1062

    Article  Google Scholar 

  17. Southern C, Schulster D, Green IC (1990) Inhibition of insulin secretion by interleukin-1Β and tumor necrosis factor-α via an L-arginine dependent nitric oxide generating mechanism. FEBS Lett 276: 42–44

    Article  PubMed  CAS  Google Scholar 

  18. Eizirik DL, Leijerstam F (1994) The inducible form of nitric oxide synthase (iNOS) in insulin-producing cells. Diabet Metab 20: 116–122

    CAS  Google Scholar 

  19. Welsh N, Eizirik DL, Bendtzen K, Sandler S (1991) Interleukin-1Β-induced nitric oxide production in isolated rat pancreatic islets requires gene transcription and may lead to inhibition of the Krebs cycle enzyme aconitase. Endocrinology 129: 3167–3173

    PubMed  CAS  Google Scholar 

  20. Eizirik DL, Welsh N, Niemann A, Velloso LA, Malaisse WJ (1994) Succinic acid monomethyl ester protect rat pancreatic islet secretory potential against interleukin-1Β (IL-1Β) without affecting glutamate decarboxylase expression or nitric oxide production. FEBS Lett 337: 298–302

    Article  PubMed  CAS  Google Scholar 

  21. Delaney CA, Green MHL, Lowe JE, Green IC (1993) Endogenous nitric oxide induced by interleukin-1Β in rat islets of Langerhans and HIT-T15 cells causes significant DNA damage as measured by the “comet” assay. FEBS Lett 333: 291–295

    Article  PubMed  CAS  Google Scholar 

  22. Fehsel K, Jalowy A, Qi S, Burkart V, Harmann B, Kolb H (1993) Islet cell DNA is a target of inflammatory attack by nitric oxide. Diabetes 42: 496–500

    Article  PubMed  CAS  Google Scholar 

  23. Corbett JA, McDaniel ML (1992) Does nitric oxide mediate autoimmune destruction of Β-cells? Possible therapeutic interventions in IDDM. Diabetes 41: 897–903

    Article  PubMed  CAS  Google Scholar 

  24. Kolb H, Kolb-Bachofen V (1992) Type 1 (insulin-dependent) diabetes mellitus and nitric oxide. Diabetologia 35: 796–797

    PubMed  CAS  Google Scholar 

  25. Eizirik DL, Pipeleers DG, Ling Z, Welsh N, Hellerström C, Andersson A (1994) Major species differences between humans and rodents in the susceptibility to pancreatic Β-cell injury. Proc Natl Acad Sci USA 91: 9235–9256

    Article  Google Scholar 

  26. Eizirik DL, Delaney CA, Green MHL et al. (1996) Nitric oxide donors decrease the function and survival of human pancreatic islets. Mol Cell Endocrinol 118: 71–83

    Article  PubMed  CAS  Google Scholar 

  27. Eizirik DL, Cagliero E, Björklund A, Welsh N (1992) Interleukin-1Β induces the expression of an isoform of nitric oxide synthase in insulin-producing cells which is similar to that observed an activated macrophages. FEBS Lett 308: 249–252

    Article  PubMed  CAS  Google Scholar 

  28. Karlsen AE, Andersen HU, Vissing SB et al. (1995) Cloning and expression of a cytokine inducible nitric oxide synthase cDNA from rat islets of Langerhans. Diabetes 44: 753–758

    Article  PubMed  CAS  Google Scholar 

  29. Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR, Snyder SH (1991) Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 351: 714–718

    Article  PubMed  CAS  Google Scholar 

  30. Nakane M, Schmidt HHHW, Pollock JS, Förstermann U, Murad F (1993) Cloned human brain nitric oxide synthase is highly expressed in skeletal muscle. FEBS Lett 316: 175–180

    Article  PubMed  CAS  Google Scholar 

  31. Lamas S, Marsden PA, Gordon KL, Tempst P, Michel T (1992) Endothelial nitric oxide synthase: Molecular cloning and characterization of a distinct constitutive enzyme isoform. Proc Natl Acad Sci USA 89: 6348–6352

    Article  PubMed  CAS  Google Scholar 

  32. Janssens SP, Shimouchi A, Quertermous T, Block DB, Block KD (1992) Cloning and expression of a cDNA encoding human endothelium-derived relaxing factor/nitric oxide synthase. J Biol Chem 267: 14519–14522

    PubMed  CAS  Google Scholar 

  33. Marsden PA, Schappert KT, Chen HS, Flowers M, Sundell CL, Wilcox JN, Lamas S, Michel T (1992) Molecular cloning and characterization of human endothelial nitric oxide synthase. FEBS Lett 207: 287–293

    Article  Google Scholar 

  34. Snyder SH (1992) Nitric oxide: first in a new class of neurotransmitters. Science 257: 494–496

    Article  PubMed  CAS  Google Scholar 

  35. Rees DD, Palmer RMJ, Moncada S (1989) Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci USA 86: 3375–3378

    Article  PubMed  CAS  Google Scholar 

  36. Lowenstein CJ, Glatt CS, Bredt DS, Snyder SH (1992) Cloned and expressed macrophage nitric oxide synthase contrasts with the brain enzyme. Proc Nat Acad Sci USA 89: 6711–6715

    Article  PubMed  CAS  Google Scholar 

  37. Xie Q-W, Cho HJ, Calaycay J et al. (1992) Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 256: 225–228

    Article  PubMed  CAS  Google Scholar 

  38. Lyons RC, Orloff GJ, Cunningham JM (1992) Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line. J Biol Chem 267: 6370–6374

    PubMed  CAS  Google Scholar 

  39. Charles JG, Palmer RMJ, Hickery MS et al. (1993) Cloning, characterization, and expression of a cDNA encoding an inducible nitric oxide synthase from the human chondrocyte. Proc Natl Acad Sci USA 90: 11419–11423

    Article  PubMed  CAS  Google Scholar 

  40. Geller DA, Lowenstein CJ, Shapiro RA et al. (1993) Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes. Proc Natl Acad Sci USA 90: 3491–3495

    Article  PubMed  CAS  Google Scholar 

  41. Chartrain NA, Geller DA, Koty PP et al. (1994) Molecular cloning, structure, and chromosomal localization of the human inducible nitric oxide synthase gene. J Biol Chem 269: 6765–6772

    PubMed  CAS  Google Scholar 

  42. Förstermann U, Kleinert H (1995) Nitric oxide synthase: expression and expressional control of the three isoforms. Naunyn-Schmiedeberg's Arch Pharmacol 352: 351–364

    Article  Google Scholar 

  43. Marletta MA (1993) Nitric oxide synthase structure and mechanism. J Biol Chem 268: 12231–12234

    PubMed  CAS  Google Scholar 

  44. Cho HJ, Xie Q, Calaycay J et al. (1992) Calmodulin is a subunit of nitric oxide synthase from macrophages. J Exp Med 176: 599–604

    Article  PubMed  CAS  Google Scholar 

  45. Gerling I, Karlsen AE, Chapman HD et al. (1994) The inducible nitric oxide synthase gene, Nos2, maps to mouse chromosome 11. Mammal Genome 5: 318–320

    Article  CAS  Google Scholar 

  46. Xu W, Gorman P, Sheer D et al. (1993) Regional localization of the gene coding for human brain nitric oxide synthase (NOS1) to 12q24.1 to 24.31 by fluorescent in situ hybridization. Cytogenet Cell Genet 64: 62–63

    Article  PubMed  CAS  Google Scholar 

  47. Marsden PA, Heng HHQ, Scherer SW et al. (1993) Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase gene. J Biol Chem 268: 17478–17488

    PubMed  CAS  Google Scholar 

  48. Marsden PA, Heng HH, Duff CL, Shi X-M, Tsui L-C, Hall AV (1994) Localization of the human gene for inducible nitric oxide synthase (NOS2) to chromosome 17q11.2–q12. Genomics 19: 183–185

    Article  PubMed  CAS  Google Scholar 

  49. Ghosh S, Palmer S, Rodrigues N et al. (1993) Polygenic control of autoimmune diabetes in nonobese diabetic mice. Nature Genet 4: 404–409

    Article  PubMed  CAS  Google Scholar 

  50. Corbett JA, Mikhael A, Shimizu J et al. (1993) Nitric oxide production in islets from nonobese diabetic mice: aminoguanidine-sensitive and -resistant stages in the immunological diabetic process. Proc Natl Acad Sci USA 90: 8992–8995

    Article  PubMed  CAS  Google Scholar 

  51. Kleemann R, Rothe H, Kolb-Bachofen V et al. (1993) Transcription and translation of inducible nitric oxide synthase in the pancreas of prediabetic BB rats. FEBS Lett 328: 9–12

    Article  PubMed  CAS  Google Scholar 

  52. Reimers JI, Andersen HU, Mauricio D et al. (1996) Strain-dependent differences in sensitivity of rat betacells to IL-1Β in vitro and in vivo. Diabetes “in press”

  53. Xu W, Charles IG, Moncada S, Gorman P, Sheer D, Liu L, Emson P (1994) Mapping of the genes encoding human inducible and endothelial nitric oxide synthase (NOS2 and NOS3) to the pericentric region of chromosome 17 and to chromosome 7, respectively. Genomics 21: 419–422

    Article  PubMed  CAS  Google Scholar 

  54. Mohaupt MG, Elzie JL, Ahn KY, Clapp WL, Wilcox CS, Kone BC (1994) Differential expression and induction of mRNAs encoding two inducible nitric oxide synthase in rat kidney. Kidney Int 46: 653–665

    Article  PubMed  CAS  Google Scholar 

  55. Bloch KD, Wolfram JR, Brown DM et al. (1995) Three members of the nitric oxide synthase II gene family (NOS2A, NOS2B, and NOS2c) colocalize to human chromosome 17. Genomics 27: 526–530

    Article  PubMed  CAS  Google Scholar 

  56. Xu W, Charles IG, Liu L, Koni PA, Moncada S, Emson P (1995) Molecular genetic analysis of the duplication of human inducible nitric oxide synthase (NOS2) sequences. Biochem Biophys Res Commun 212: 466–472

    Article  PubMed  CAS  Google Scholar 

  57. Xie Q-W, Whisnant R, Nathan C (1993) Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon gamma and bacterial lipopolysaccharide. J Exp Med 177: 1779–1784

    Article  PubMed  CAS  Google Scholar 

  58. Lowenstein CJ, Alley EW, Raval P et al. (1993) Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon gamma and lipopolysaccharide. Proc Natl Acad Sci USA 90: 9730–9734

    Article  PubMed  CAS  Google Scholar 

  59. Nunokawa Y, Ishida N, Tanaka S (1994) Promoter analysis of human inducible nitric oxide synthase gene associated with cardiovascular homeostasis. Biochem Biophys Res Commun 200: 802–807

    Article  PubMed  CAS  Google Scholar 

  60. Melillo G, Musso T, Sica A, Taylor LS, Cox GW, Varesio L (1995) A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J Exp Med 182: 1683–1693

    Article  PubMed  CAS  Google Scholar 

  61. Ding AH, Nathan CF, Stuehr DJ (1988) Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol 141: 2407–2412

    PubMed  CAS  Google Scholar 

  62. Spink J, Cohen J, Evans TJ (1995) The cytokine responsive smooth muscle cell enhancer of inducible nitric oxide synthase. Activation by nuclear factor κB. J Biol Chem 270: 29541–29547

    Article  PubMed  CAS  Google Scholar 

  63. Chu SC, Wu H-P, Banks TC, Eissa NT, Moss J (1995) Structural diversity on the 5′-untranslated region of cytokine-stimulated human inducible nitric oxide synthase mRNA. J Biol Chem 270: 10625–10630

    Article  PubMed  CAS  Google Scholar 

  64. De Vera ME, Shapiro RA, Nussler AK et al. (1996) Transcriptional regulation of human inducible nitric oxide synthase (NOS2) gene by cytokines: initial analysis of the human NOS2 promoter. Proc Natl Acad Sci USA 93: 1054–1059

    Article  PubMed  Google Scholar 

  65. Sachs AB (1993) Messenger RNA degradation in eukaryotes. Cell 74: 413–421

    Article  PubMed  CAS  Google Scholar 

  66. Evans T, Carpenter A, Cohen J (1994) Inducible nitric oxide synthase mRNA is transiently expressed and destroyed by a cycloheximide-sensitive process. Eur J Biochem 219: 563–569

    Article  PubMed  CAS  Google Scholar 

  67. Geng Y, Lotz M (1995) Increased intracellular Ca2+ selectively suppresses IL-1-induced NO production by reducing iNOS mRNA stability. J Cell Biol 129: 1651–1657

    Article  PubMed  CAS  Google Scholar 

  68. Vodovotz Y, Bogdan C, Paik J, Xie Q-W, Nathan C (1993) Mechanisms of suppression of macrophage nitric oxide release by transforming growth factor Β. J Exp Med 178: 605–613

    Article  PubMed  CAS  Google Scholar 

  69. Niemann A, Björklund A, Eizirik DL (1994) Studies on the molecular regulation of the inducible form of nitric oxide synthase (iNOS) in insulin-producing cells. Mol Cell Endocrinol 106: 151–155

    Article  PubMed  CAS  Google Scholar 

  70. Eizirik DL, Björklund A, Welsh N (1993) Interleukin-1-induced expression of nitric oxide synthase in insulin-producing cells is preceded by c-fos induction and depends on gene transcription and protein synthesis. FEBS Lett 317: 62–66

    Article  PubMed  CAS  Google Scholar 

  71. Park SK, Lin HL, Murphy S (1994) Nitric oxide limits transcriptional induction of nitric oxide synthase in CNS glial cells. Biochem Biophys Res Commun 201: 762–768

    Article  PubMed  CAS  Google Scholar 

  72. Colasanti M, Persichini T, Menegazzi M et al. (1995) Induction of nitric oxide synthase mRNA expression. Suppression by exogenous nitric oxide. J Biol Chem 270: 26731–26733

    Article  PubMed  CAS  Google Scholar 

  73. Nussler AK, Billiar TR, Liu Z-Z, Morris SM Jr (1994) Coinduction of nitric oxide synthase and argininosuccinate synthetase in a murine macrophage cell line. Implications for regulation of nitric oxide production. J Biol Chem 269: 1257–1261

    PubMed  CAS  Google Scholar 

  74. Peng H-B, Libby P, Liao JK (1995) Induction and stabilization of IκB alpha by nitric oxide mediates inhibition of NF-κB. J Biol Chem 270: 14214–14219

    Article  PubMed  CAS  Google Scholar 

  75. Griscavage JM, Rogers NE, Sherman MP, Ignarro LJ (1993) Inducible nitric oxide synthase from a rat alveolar macrophage cell line is inhibited by nitric oxide. J Immunol 151: 6329–6337

    PubMed  CAS  Google Scholar 

  76. Mandrup-Poulsen T, Corbett JA, McDaniel ML, Nerup J (1993) What are the types and cellular sources of free radicals in the pathogenesis of type 1 (insulin-dependent) diabetes mellitus. Diabetologia 36: 470–473

    Article  PubMed  CAS  Google Scholar 

  77. Cetkovic-Cvrlje M, Sandler S, Eizirik DL (1993) Nicotinamide and dexamethasone inhibit interLeukin-1-induced nitric oxide production by RINm5F cells without decreasing messenger ribonucleic acid expression for nitric oxide synthase. Endocrinology 133: 1739–1743

    Article  PubMed  CAS  Google Scholar 

  78. Corbett JA, Kwon G, Misko TP, Rodi CP, McDaniel ML (1994) Tyrosine kinase involvement in IL-1Β-induced expression of iNOS by Β-cells purified from islets of Langerhans. Am J Physiol 267: C48-C54

    PubMed  CAS  Google Scholar 

  79. Corbett JA, McDaniel ML (1995) Intraislet release of interleukin-1 inhibits Β-cell function by inducing Β-cell expression of inducible nitric oxide synthase. J Exp Med 181: 559–568

    Article  PubMed  CAS  Google Scholar 

  80. Cetkovic-Cvrlje M, Eizirik DL (1994) TNF-α and IFN-γ potentiate the deleterious effects of IL-1Βon mouse pancreatic islets mainly via generation of nitric oxide. Cytokine 6: 399–406

    Article  PubMed  CAS  Google Scholar 

  81. Flodström M, Niemann A, Bedoya FJ, Morris SM Jr, Eizirik DL (1995) Expression of the citrulline-nitric oxide cycle in rodent and human pancreatic Β-cells: induction of argininosuccinate synthase by cytokines. Endocrinology 136: 3200–3206

    Article  PubMed  Google Scholar 

  82. Bigdeli N, Niemann A, Sandler S, Eizirik DL (1994) Dissociation between interleukin-1Β-induced expression of mRNA for superoxide dismutase and nitric oxide synthase in insulin-producing cells. Biochem Biophys Res Commun 203: 1542–1547

    Article  PubMed  CAS  Google Scholar 

  83. Messmer U, Brüne B (1994) Modulation of inducible nitric oxide synthase in RINm5F cells. Cell Signal 6: 17–24

    Article  PubMed  CAS  Google Scholar 

  84. Andersen HU, Mauricio D, Karlsen AE, Mandrup-Poulsen T, Nielsen JH, Nerup J (1996) Interleukin-1Β-induced nitric oxide production from isolated rat islets is modulated by D-glucose and 3-isobutyl-1-methyl xanthine. Eur J Endocrinol 134: 251–260

    Article  PubMed  CAS  Google Scholar 

  85. Liew FY, Li Y, Severn A, Millot S, Schmidt J, Salter M, Moncada S (1992) A possible novel pathway of regulation by murine T helper type-2 (Th2) cells of a Th1 cell activity via the modulation of the induction of nitric oxide synthase on macrophages. Eur J Immunol 21: 2489–2494

    Article  Google Scholar 

  86. Cunha FQ, Moncada S, Liew FY (1992) Interleukin-10 (IL-10) inhibits the induction of nitric oxide synthase by interferon γ in murgine macrophages. Biochem Biophys Res Commun 182: 1155–1159

    Article  PubMed  CAS  Google Scholar 

  87. Sandler S, Welsh N (1993) Interleukin-10 stimulates rat pancreatic islets in vitro, but fails to protect against interleukin-1. Biochem Biophys Res Commun 195: 859–865

    Article  PubMed  CAS  Google Scholar 

  88. Pinsky DJ, Cai B, Yang X, Rodriguez C, Sciacca RR, Cannon PJ (1995) The lethal effects of cytokine-induced nitric oxide on cardiac myocites are blocked by nitric oxide synthase antagonism or transforming growth factor Β. J Clin Invest 95: 677–685

    Article  PubMed  CAS  Google Scholar 

  89. Kutty RK, Kutty G, Hooks JJ, Wiggert B, Nagineni CN (1995) Transforming growth factor-Β inhibits the cytokine-mediated expression of the inducible nitric oxide synthase mRNA in human retinal pigment epithelial cells. Biochem Biophys Res Commun 215: 386–393

    Article  PubMed  CAS  Google Scholar 

  90. Marbley JG, Cunningham JM, Schulster D, Green IC (1994) Transforming growth factor Β1 protects rat islets from the inhibitory effects of interleukin-1 on insulin secretion. Diabetologia 37 [Suppl 1]:A44 (Abstract)

    Google Scholar 

  91. Hao W, Palmer JP (1995) Recombinant human transforming growth factor Β does not inhibit the effects of interleukin-1Β on pancreatic islet cells. J Interferon Cyt Res 15: 1075–1082

    CAS  Google Scholar 

  92. Dayer-Métroz MD, Wollheim CB, Seckinger P, Dayer JM (1989) A natural interleukin 1 (IL-1) inhibitor counteracts the inhibitory effect of IL-1 on insulin production in cultured rat pancreatic islets. J Autoimmun 2: 163–171

    Article  PubMed  Google Scholar 

  93. Hammonds P, Beggs M, Beresford G, Espinal J, Clarke J, Mertz RJ (1990) Insulin-secreting Β-cells possess specific receptors for interleukin-1Β. FEBS Lett 261: 97–100

    Article  PubMed  CAS  Google Scholar 

  94. Eizirik DL, Tracey DE, Bendtzen K, Sandler S (1991) An interleukin-1 receptor antagonist protein protects insulin-producing beta cells against suppressive effects of interleukin- 1Β. Diabetologia 34: 445–448

    Article  PubMed  CAS  Google Scholar 

  95. Eizirik DL, Tracey DE, Bendtzen K, Sandler S (1992) Role of receptor binding and gene transcription for both the stimulatory and inhibitory effects of interleukin-1 in pancreatic Β-cells. Autoimmunity 12: 127–133

    Article  PubMed  CAS  Google Scholar 

  96. Zumsteg U, Reimers JI, Pociot F et al. (1993) Differential interleukin-1 receptor antagonism on pancreatic beta and alpha cells. Studies in rodent and human islets and in normal rats. Diabetologia 36: 759–766

    Article  PubMed  CAS  Google Scholar 

  97. Bristulf J, Gatti S, Malinowksy D, Björk L, Sundgren AK, Barfai T (1994) Interleukin-1 stimulates the expression of type I and type II interleukin-1 receptors in the rat insulinoma cell line RINm5F; sequencing a rat type II interleukin-1 receptor cDNA. Eur Cytokine Net 5: 319–330

    CAS  Google Scholar 

  98. Jafarian-Tehrani M, Amrani A, Homo-Delarche F, Marquette C, Dardenne M, Haour F (1995) Localization and characterization of interleukin-1 receptors in the islets of Langerhans from control and nonobese diabetic mice. Endocrinology 136: 609–613

    Article  PubMed  CAS  Google Scholar 

  99. Taniguchi T (1995) Cytokine signaling through nonreceptor protein tyrosine kinases. Science 268: 251–255

    Article  PubMed  CAS  Google Scholar 

  100. Martin M, Bol GF, Eriksson A, Resch K, Brigelius-Flohe R (1994) Interleukin-1-induced activation of a protein kinase coprecipitating with the type 1 interleukin-1 receptor in T cells. Eur J Immunol 24: 1566–1571

    Article  PubMed  CAS  Google Scholar 

  101. Croston GE, Cao Z, Goeddel DV (1995) NF-κB activation by interleukin-1 (IL-1) requires an IL-1-receptor-associated protein kinase activity. J Biol Chem 270: 16514–16517

    Article  PubMed  CAS  Google Scholar 

  102. Cao Z, Henzel WJ, Gao X (1996) IRAK: a kinase associated with the interleukin-1 receptor. Science 271: 1128–1131

    Article  PubMed  CAS  Google Scholar 

  103. Grimm S, Baeuerle PA (1993) The inducible transcription factor NF-κB: structure-function relationship of its protein subunits. Biochem J 290: 297–308

    PubMed  CAS  Google Scholar 

  104. Lenardo MJ, Pierce JW, Baltimore D (1987) Protein-binding sites in Ig gene enhancers determine transcriptional activity and inducibility. Science 236: 1573–1577

    Article  PubMed  CAS  Google Scholar 

  105. Saldeen J, Welsh N (1994) Interleukin-1Β induced activation of NF-κB in insulin producing RINm5F cells is prevented by the protease inhibitor Nα-p-tosyl-l-lysine choromethylketone. Biochem Biophys Res Commun 203: 149–155

    Article  PubMed  CAS  Google Scholar 

  106. Welsh N, Bendtzen K, Sandler S (1991) Influence of protease on inhibitory and stimulatory effects of interleukin-1Β on Β-cell function. Diabetes 40: 290–294

    Article  PubMed  CAS  Google Scholar 

  107. Henkel T, Macleidt T, Alkalay I, Krönke M, Ben-Neriah Y, Baeuerle PA (1993) Rapid proteolysis of IκB-α is necessary for activation of transcription factor NF-κB. Nature 365: 182–185

    Article  PubMed  CAS  Google Scholar 

  108. Bedoya FJ, Flodström M, Eizirik DL (1995) Pyrrolidine dithiocarbamate prevents IL-1-induced nitric oxide synthase mRNA, but not superoxide dismutase mRNA, in insulin producing cells. Biochem Biophys Res Commun 210: 816–822

    Article  PubMed  CAS  Google Scholar 

  109. Kwon G, Corbett JA, Rodi CP, Sullivan P, McDaniel ML (1995) Interleukin-1Β-induced nitric oxide synthase expression by rat pancreatic Β-cells: Evidence for the involvement of nuclear factor κB in the signaling mechanism. Endocrinology 136: 4790–4795

    Article  PubMed  CAS  Google Scholar 

  110. Schreck R, Meier B, Mannel DN, Droge W, Baeuerle PA (1992) Dithiocarbamates as potent inhibitors of nuclear factor κB activation in intact cells. J Exp Med 175: 1181–1194

    Article  PubMed  CAS  Google Scholar 

  111. Welsh N, Margulis B, Bendtzen K, Sandler S (1994) Liposomal delivery of antioxidant enzymes protects against hydrogen peroxide- but not interleukin-1Β-induced inhibition of glucose metabolism in rat pancreatic islets. J Endocrinol 143: 152–156

    Article  Google Scholar 

  112. Bass DA, Parce JW, Dechatelet LR, Szejda P, Seeds MC, Thomas M (1983) Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J Immunol 130: 1910–1917

    PubMed  CAS  Google Scholar 

  113. Flodström M, Welsh N, Eizirik DL (1996) Cytokines activate the nuclear factor κB (NF-κB) and induce nitric oxide production in human pancreatic islets. FEBS Lett: 385: 4–6

    Article  Google Scholar 

  114. Kamijo R, Harada H, Matsuyama T et al. (1994) Requirement for transcription factor IRF-1 in NO synthase induction in macrophages. Science 263: 1612–1615

    Article  PubMed  CAS  Google Scholar 

  115. Akabane A, Kato I, Takasawa S et al. (1995) Nicotinamide inhibits IRF-1 mRNA induction and prevents IL-1Β-induced nitric oxide synthase expression in pancreatic Β cells. Biochem Biophys Res Commun 215: 524–530

    Article  PubMed  CAS  Google Scholar 

  116. Hughes JH, Watson MA, Easom RA, Turk J, McDaniel ML (1990) Interleukin-1 induces rapid and transient expression of the c-fos proto-oncogene in isolated pancreatic islets and in purified Β-cells. FEBS Lett 266: 33–36

    Article  PubMed  CAS  Google Scholar 

  117. Angel P, Karin M (1991) The role of Jun, Fos and the AP-1 complex in cell proliferation and transformation. Biochim Biophys Acta 1072: 129–157

    PubMed  CAS  Google Scholar 

  118. Dérijard B, Hibi M, Wu I-H et al. (1994) JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylated the c-Jun activation domain. Cell 76: 1025–1037

    Article  PubMed  Google Scholar 

  119. Coso OA, Chiariello M, Yu J-C et al. (1995) The small GTP-binding proteins Racl and Cdc42 regulate the activity of the JNK/SAPK signalling pathway. Cell 81: 1137–1146

    Article  PubMed  CAS  Google Scholar 

  120. Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80: 179–185

    Article  PubMed  CAS  Google Scholar 

  121. Rouse J, Cohen P, Trigon S et al. (1994) A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 78: 1027–1037

    Article  PubMed  CAS  Google Scholar 

  122. Sanchez I, Hughes RT, Mayer BJ et al. (1994) Role of SAPK/ERK kinase-1 in the stress-activated pathway regulating transcription factor c-Jun. Nature 372: 794–798

    PubMed  CAS  Google Scholar 

  123. Gupta S, Campbell D, Dérijard B, Davis RJ (1995) Transcription factor ATF2 regulation by the INK signal transduction pathway. Science 267: 389–393

    Article  PubMed  CAS  Google Scholar 

  124. Verheij M, Bose R, Lin XH et al. (1996) Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature 380: 75–79

    Article  PubMed  CAS  Google Scholar 

  125. Westwick JK, Bielawska AE, Dbaibo G, Hannun YA, Brenner DA (1995) Ceramide activates the stress-activated protein kinases. J Biol Chem 270: 22689–22692

    Article  PubMed  CAS  Google Scholar 

  126. Wolff RA, Dobrowsky RT, Bielawska A, Abeid LM, Hannun YA (1994) Role of ceramide-activated protein phosphatase in ceramide-mediated signal transduction. J Biol Chem 269: 19605–19609

    PubMed  CAS  Google Scholar 

  127. Welsh N (1996) Interleukin-1Β induced ceramide and diacylglycerol generation may lead to activation of the c-Jun NH2-terminal kinase and the transcription factor ATF2 in the insulin-producing cell line RINm5F. J Biol Chem 271: 8307–8312

    Article  PubMed  CAS  Google Scholar 

  128. Eizirik DL, Sandler S, Welsh N, Juntti-Berggren L, Berggren P-O (1995) Interleukin-1Β-induced stimulation of insulin release in mouse pancreatic islets is related to diacylglycerol production and protein kinase C activation. Mol Cell Endocrinol 111: 159–165

    Article  PubMed  CAS  Google Scholar 

  129. Arkhammar P, Nilsson T, Welsh M, Welsh N, Berggren PO (1989) Effects of protein kinase C activation on the regulation of the stimulus-secretion coupling in pancreatic Β-cells. Biochem J 264: 207–215

    PubMed  CAS  Google Scholar 

  130. Schutze S, Potthoff K, Macleidt T et al. (1992) TNF activates NF-κB by phosphatidylcholine-specific phospholipase C-induced “acidic” sphingomyelin breakdown. Cell 71: 765–776

    Article  PubMed  CAS  Google Scholar 

  131. Kolesnick RN (1987) 1,2-diacylglycerols, but not phorbol esters, stimulate sphingomyelin hydrolysis in GH3 pituitary cells. J Biol Chem 262: 16759–16762

    PubMed  CAS  Google Scholar 

  132. Trautwein C, Caelles C, van der Geer P, Hunter T, Karin M, Chojkier M (1993) Transactivation by NF-IL6/LAP is enhanced by phosphorylation of its activation domain. Nature 364: 544–547

    Article  PubMed  CAS  Google Scholar 

  133. Poli V, Mancini FP, Cortese R (1990) IL-6DBP, a nuclear protein involved in interleukin-6 signal transduction, defines a new family of leucine zipper proteins to C/EBP. Cell 63: 643–653

    Article  PubMed  CAS  Google Scholar 

  134. Prestera T, Talalay P, Alam J, Ahn YI, Lee PJ, Choi MK (1995) Parallel induction of heme oxygenase-1 and chemoprotective phase 2 enzymes by electrophiles and antioxidants: regulation by upstream antioxidant-responsive elements (ARE). Mol Med 1: 827–837

    PubMed  CAS  Google Scholar 

  135. Welsh N (1994) A role for tyrosine kinase activation in interleukin-1Βinduced nitric oxide production in the insulin producing cell line RINm5F. Bioscience Rep 14: 43–50

    Article  CAS  Google Scholar 

  136. Tetsuka T, Srivastava SK, Morrison AR (1996) Tyrosine kinase inhibitors, genistein and herbimycin A do not block interleukin-1Β-induced activation of NF-κB in rat mesangial cells. Biochem Biophys Res Commun 218: 808–812

    Article  PubMed  CAS  Google Scholar 

  137. Andersen HU, Larsen PM, Fey SJ, Karlsen AE, Mandrup-Poulsen T, Nerup J (1995) Two dimensional gel electro-phoresis of rat islet proteins. Interleukin-1Β-induced changes in protein expression are reduced by L-arginine depletion and nicotinamide. Diabetes 44: 400–407

    Article  PubMed  CAS  Google Scholar 

  138. Morris SM Jr, Billiar TR (1994) New insights into the regulation of inducible nitric oxide synthesis. Am J Physiol 266: E829-E839

    PubMed  CAS  Google Scholar 

  139. Iyengar R, Stuher D, Marletta M (1987) Macrophage synthesis of nitrite, nitrate, and N-nitrosoamines: precursors and role of the respiratory burst. Proc Natl Acad Sci USA 84: 6369–6373

    Article  PubMed  CAS  Google Scholar 

  140. Albina JE, Mills CD, Barbul A et al. (1988) Arginine metabolism in wounds. Am J Physiol 254: E459–467

    PubMed  CAS  Google Scholar 

  141. Hattori Y, Cambell EB, Gross SS (1994) Argininosuccinate synthetase mRNA and activity are induced by immunostimulants in vascular smooth muscle. Role in the regeneration of arginine for nitric oxide synthesis. J Biol Chem 269: 9405–9408

    PubMed  CAS  Google Scholar 

  142. Nagasaki A, Gotoh T, Takeya M et al. (1996) Coinduction of nitric oxide synthase, argininosuccinate synthetase, and argininosuccinate lyase in lipopolysaccharide-treated rat. J Biol Chem 271: 2658–2662

    Article  PubMed  CAS  Google Scholar 

  143. Wang WW, Jenkinson CP, Griscavage JM et al. (1995) Coinduction of arginase and nitric oxidase synthase in murine macrophages activated by lipopolysaccharide. Biochem Biophys Res Commun 210: 1009–1016

    Article  PubMed  CAS  Google Scholar 

  144. Sener A, Blaicher F, Malaisse WJ (1988) Production of urea but absence of urea cycle in pancreatic islet cells. Med Sci Res 16: 483–484

    CAS  Google Scholar 

  145. Boucher J-L, Custot J, Vadon S et al. (1994) NΩ-hydroxy-L-arginine, an intermediate in the L-arginine to nitric oxide pathway, is a strong inhibitor of liver and macrophage arginase. Biochem Biophys Res Commun 203: 1614–1621

    Article  PubMed  CAS  Google Scholar 

  146. Corbett JA, Kwon G, Turk J, McDaniel ML (1993) IL-1Β induces coexpression of both nitric oxide synthase and cyclooxygenase by islets of Langerhans: activation of cyclooxygenase by nitric oxide. Biochemistry 32: 13767–13770

    Article  PubMed  CAS  Google Scholar 

  147. Salvemini D, Misko TP, Masferrer JL, Seibert K, Currie MG, Needleman P (1993) Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci USA 90: 7240–7244

    Article  PubMed  CAS  Google Scholar 

  148. Bleich D, Chen S, Gu J-L et al. (1995) Interleukin-1Β regulates the expression of a leukocyte type of 12-lypoxygenase in rat islets and RINm5F cells. Endocrinology 136: 5736–5744

    Article  PubMed  CAS  Google Scholar 

  149. Ma Z, Ramanadham S, Corbett JA et al. (1996) Interleukin-1 enhances pancreatic islet arachidonic acid 12-lypoxygenase product generation by increasing substrate availability through a nitric oxide-dependent mechanism. J Biol Chem 271: 1029–1042

    Article  PubMed  CAS  Google Scholar 

  150. Eizirik DL, Strandell E, Bendtzen K, Sandler S (1988) Functional characteristics of rat pancreatic islets maintained in tissue culture following exposure to interleukin-1. Diabetes 37: 916–919

    Article  PubMed  CAS  Google Scholar 

  151. Borg LAH, Cagliero E, Sandler S, Welsh N, Eizirik DL (1992) Interleukin-1Β increases the activity of superoxide dismutase in rat pancreatic islets. Endocrinology 130: 2851–2857

    Article  PubMed  CAS  Google Scholar 

  152. Eizirik DL, Welsh M, Strandell E, Welsh N, Sandler S (1990) Interleukin-1Β depletes insulin messenger ribonucleic acid and increases the heat shock protein hsp70 in mouse pancreatic islets without impairing the glucose metabolism. Endocrinology 127: 2290–2297

    Article  PubMed  CAS  Google Scholar 

  153. Welsh N, Welsh M, Lindquist S, Eizirik DL, Bendtzen K, Sandler S (1991) Interleukin-1Β increases the biosynthesis of the heat shock protein hsp70 and specifically decreases the biosynthesis of five proteins in rat pancreatic islets. Autoimmunity 9: 33–40

    Article  PubMed  CAS  Google Scholar 

  154. Helqvist S, Polla BS, Johannensen JH, Nerup J (1991) Heat shock protein induction in rat pancreatic islets by human recombinant interleukin-1Β. Diabetologia 34: 150–156

    Article  PubMed  CAS  Google Scholar 

  155. Welsh N, Margulis B, Borg LAH et al. (1995) Differences in the expression of heat-shock proteins and antioxidant enzymes between human and rodent pancreatic islets: implications for the pathogenesis of insulin-dependent diabetes mellitus. Mol Med 1: 806–820

    PubMed  CAS  Google Scholar 

  156. Strandell E, Buschard K, Saldeen J, Welsh N (1995) Interleukin-1Β induces the expression of hsp70, heme oxygenase and MnSOD in FACS purified rat islet Β-cells, but not in α-cells. Immunol Lett 48: 145–148

    Article  PubMed  CAS  Google Scholar 

  157. Nathan CF (1987) Secretory products of macrophages. J Clin Invest 79: 319–326

    Article  PubMed  CAS  Google Scholar 

  158. Darley-Usmar VM, Hogg N, O'Leary WJ, Wilson MT, Moncada S (1992) The simultaneous generation of superoxide anion and nitric oxide can initiate lipid peroxidation in human low density lipoprotein. Free Rad Res Commun 17: 9–20

    Article  CAS  Google Scholar 

  159. Hausladen A, Fridovich I (1994) Superoxide and peroxynitrite inactivate aconitase, nitric oxide does not. J Biol Chem 269: 29405–29408

    PubMed  CAS  Google Scholar 

  160. Castro L, Rodriguez M, Radi R (1994) Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide. J Biol Chem 269: 29409–29415

    PubMed  CAS  Google Scholar 

  161. Margulis BA, Sandler S, Eizirik DL, Welsh N, Welsh M (1991) Liposomal delivery of purified heat shock protein hsp70 into rat pancreatic islets as protection against interleukin 1Β-induced impaired Β-cell function. Diabetes 40: 1418–1422

    Article  PubMed  CAS  Google Scholar 

  162. Bellman K, Wenz A, Radons J, Burkart V, Kleeman R, Kolb H (1995) Heat shock induces resistance in rat pancreatic islets against nitric oxide, oxygen radicals and streptozotocin toxicity. J Clin Invest 95: 2840–2845

    Article  Google Scholar 

  163. Wei X, Charles IG, Smith A et al. (1995) Altered immune responses in mice lacking inducible nitric oxide synthase. Nature 375: 408–411

    Article  PubMed  CAS  Google Scholar 

  164. MacMicking JD, Nathan C, Hom G et al. (1995) Altered response to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 81: 641–650

    Article  PubMed  CAS  Google Scholar 

  165. Leubach VE, Shesely EG, Smithies O, Sherman PA (1995) Mice lacking inducible nitric oxide synthase are not resistant to lipopolysaccharide-induced death. Proc Natl Acad Sci USA 92: 10688–10692

    Article  Google Scholar 

  166. James J (1993) The music of the spheres. Little, Brown and Company, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eizirik, D.L., Flodström, M., Karlsen, A.E. et al. The harmony of the spheres: inducible nitric oxide synthase and related genes in pancreatic beta cells. Diabetologia 39, 875–890 (1996). https://doi.org/10.1007/BF00403906

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00403906

Keywords

Navigation