Skip to main content

Murine Gammaherpesvirus 68: A Small Animal Model for Gammaherpesvirus-Associated Diseases

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1018))

Abstract

Murine gammaherpesvirus 68 (MHV68) is a naturally occurring pathogen of murid rodents that is genetically related to the human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV). Viral, immunologic, and disease parameters following experimental infection of laboratory mice with MHV68 closely resemble what occurs during primary EBV infection of humans, which suggests that MHV68 infection of mice offers a small animal model to study in general the pathogenesis of gammaherpesvirus infections. Diseases elicited by MHV68 infection include lymphoproliferative diseases, idiopathic pulmonary fibrosis, and autoimmune diseases, ailments also associated with EBV infection of humans. Furthermore, MHV68 infection also is linked to the development of vasculitis, encephalomyelitis, and other disorders that resemble pathologies with viral and nonviral etiologies in humans. This review aims to provide an overview of MHV68-associated diseases in infected mice that may provide a model for understanding basic mechanisms by which similar diseases in humans occur and can be treated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Blaskovic D, Stancekova M, Svobodova J, Mistrikova J (1980) Isolation of five strains of herpesviruses from two species of free living small rodents. Acta Virol 24:468

    CAS  PubMed  Google Scholar 

  2. Mistrikova J, Blaskovic D (1985) Ecology of the murine alphaherpesvirus and its isolation from lungs of rodents in cell culture. Acta Virol 29:312–317

    CAS  PubMed  Google Scholar 

  3. Svobodova J, Blaskovic D, Mistrikova J (1982) Growth characteristics of herpesviruses isolated from free living small rodents. Acta Virol 26:256–263

    CAS  PubMed  Google Scholar 

  4. Efstathiou S, Ho YM, Hall S, Styles CJ, Scott SD, Gompels UA (1990) Murine herpesvirus 68 is genetically related to the gammaherpesviruses Epstein-Barr virus and herpesvirus saimiri. J Gen Virol 71(Pt 6):1365–1372

    Article  CAS  PubMed  Google Scholar 

  5. Virgin HW, Latreille P, Wamsley P, Hallsworth K, Weck KE, Dal Canto AJ, Speck SH (1997) Complete sequence and genomic analysis of murine gammaherpesvirus 68. J Virol 71:5894–5904

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sunil-Chandra NP, Efstathiou S, Nash AA (1992) Murine gammaherpesvirus 68 establishes a latent infection in mouse B lymphocytes in vivo. J Gen Virol 73(Pt 12):3275–3279

    Article  PubMed  Google Scholar 

  7. Weck KE, Barkon ML, Yoo LI, Speck SH, Virgin HI (1996) Mature B cells are required for acute splenic infection, but not for establishment of latency, by murine gammaherpesvirus 68. J Virol 70:6775–6780

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Weck KE, Kim SS, Virgin HI, Speck SH (1999) B cells regulate murine gammaherpesvirus 68 latency. J Virol 73:4651–4661

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Milho R, Smith CM, Marques S, Alenquer M, May JS, Gillet L, Gaspar M, Efstathiou S, Simas JP, Stevenson PG (2009) In vivo imaging of murid herpesvirus-4 infection. J Gen Virol 90:21–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stewart JP, Usherwood EJ, Ross A, Dyson H, Nash T (1998) Lung epithelial cells are a major site of murine gammaherpesvirus persistence. J Exp Med 187:1941–1951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Weck KE, Kim SS, Virgin HI, Speck SH (1999) Macrophages are the major reservoir of latent murine gammaherpesvirus 68 in peritoneal cells. J Virol 73:3273–3283

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sunil-Chandra NP, Arno J, Fazakerley J, Nash AA (1994) Lymphoproliferative disease in mice infected with murine gammaherpesvirus 68. Am J Pathol 145:818–826

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Usherwood EJ, Ross AJ, Allen DJ, Nash AA (1996) Murine gammaherpesvirus-induced splenomegaly: a critical role for CD4 T cells. J Gen Virol 77(Pt 4):627–630

    Article  CAS  PubMed  Google Scholar 

  14. Tarakanova VL, Suarez F, Tibbetts SA, Jacoby MA, Weck KE, Hess JL, Speck SH, Virgin HW (2005) Murine gammaherpesvirus 68 infection is associated with lymphoproliferative disease and lymphoma in BALB beta2 microglobulin-deficient mice. J Virol 79:14668–14679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ebrahimi B, Dutia BM, Brownstein DG, Nash AA (2001) Murine gammaherpesvirus-68 infection causes multi-organ fibrosis and alters leukocyte trafficking in interferon-gamma receptor knockout mice. Am J Pathol 158:2117–2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gangadharan B, Hoeve MA, Allen JE, Ebrahimi B, Rhind SM, Dutia BM, Nash AA (2008) Murine gammaherpesvirus-induced fibrosis is associated with the development of alternatively activated macrophages. J Leukoc Biol 84:50–58

    Article  CAS  PubMed  Google Scholar 

  17. Weck KE, Dal Canto AJ, Gould JD, O’Guin AK, Roth KA, Saffitz JE, Speck SH, Virgin HW (1997) Murine gamma-herpesvirus 68 causes severe large-vessel arteritis in mice lacking interferon-gamma responsiveness: a new model for virus-induced vascular disease. Nat Med 3:1346–1353

    Article  CAS  PubMed  Google Scholar 

  18. Park S, Buck MD, Desai C, Zhang X, Loginicheva E, Martinez J, Freeman ML, Saitoh T, Akira S, Guan JL, He YW, Blackman MA, Handley SA, Levine B, Green DR, Reese TA, Artyomov MN, Virgin HW (2016) Autophagy genes enhance murine Gammaherpesvirus 68 reactivation from latency by preventing virus-induced systemic inflammation. Cell Host Microbe 19:91–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Peacock JW, Elsawa SF, Petty CC, Hickey WF, Bost KL (2003) Exacerbation of experimental autoimmune encephalomyelitis in rodents infected with murine gammaherpesvirus-68. Eur J Immunol 33:1849–1858

    Article  CAS  PubMed  Google Scholar 

  20. Sunil-Chandra NP, Efstathiou S, Arno J, Nash AA (1992) Virological and pathological features of mice infected with murine gamma-herpesvirus 68. J Gen Virol 73(Pt 9):2347–2356

    Article  PubMed  Google Scholar 

  21. Cardin RD, Brooks JW, Sarawar SR, Doherty PC (1996) Progressive loss of CD8+ T cell-mediated control of a gamma-herpesvirus in the absence of CD4+ T cells. J Exp Med 184:863–871

    Article  CAS  PubMed  Google Scholar 

  22. Cantani A, Mastrantoni F (1989) Recent advances on Epstein-Barr virus infectious mononucleosis. Riv Eur Sci Med Farmacol 11:41–44

    CAS  PubMed  Google Scholar 

  23. Flano E, Woodland DL, Blackman MA (2002) A mouse model for infectious mononucleosis. Immunol Res 25:201–217

    Article  CAS  PubMed  Google Scholar 

  24. Lee BJ, Santee S, Von Gesjen S, Ware CF, Sarawar SR (2000) Lymphotoxin-alpha-deficient mice can clear a productive infection with murine gammaherpesvirus 68 but fail to develop splenomegaly or lymphocytosis. J Virol 74:2786–2792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ehtisham S, Sunil-Chandra NP, Nash AA (1993) Pathogenesis of murine gammaherpesvirus infection in mice deficient in CD4 and CD8 T cells. J Virol 67:5247–5252

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Molloy M, Zhang W, Usherwood E (2010) Mononucleosis and antigen-driven T cell responses have different requirements for interleukin-2 signaling in murine gammaherpesvirus infection. J Virol 84:10923–10927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Robertson KA, Usherwood EJ, Nash AA (2001) Regression of a murine gammaherpesvirus 68-positive b-cell lymphoma mediated by CD4 T lymphocytes. J Virol 75:3480–3482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liang X, Paden CR, Morales FM, Powers RP, Jacob J, Speck SH (2011) Murine gamma-herpesvirus immortalization of fetal liver-derived B cells requires both the viral cyclin D homolog and latency-associated nuclear antigen. PLoS Pathog 7:e1002220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liang X, Crepeau RL, Zhang W, Speck SH, Usherwood EJ (2013) CD4 and CD8 T cells directly recognize murine gammaherpesvirus 68-immortalized cells and prevent tumor outgrowth. J Virol 87:6051–6054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Good DJ, Gascoyne RD (2009) Atypical lymphoid hyperplasia mimicking lymphoma. Hematol Oncol Clin North Am 23:729–745

    Article  PubMed  Google Scholar 

  31. Tarakanova VL, Kreisel F, White DW, Virgin HW (2008) Murine gammaherpesvirus 68 genes both induce and suppress lymphoproliferative disease. J Virol 82:1034–1039

    Article  CAS  PubMed  Google Scholar 

  32. Peterson PA, Rask L, Ostberg L (1977) Beta2-microglobulin and the major histocompatibility complex. Adv Cancer Res 24:115–163

    Article  CAS  PubMed  Google Scholar 

  33. Dunleavy K, Roschewski M, Wilson WH (2012) Lymphomatoid granulomatosis and other Epstein-Barr virus associated lymphoproliferative processes. Curr Hematol Malig Rep 7:208–215

    Article  PubMed  Google Scholar 

  34. Wilson WH, Kingma DW, Raffeld M, Wittes RE, Jaffe ES (1996) Association of lymphomatoid granulomatosis with Epstein-Barr viral infection of B lymphocytes and response to interferon-alpha 2b. Blood 87:4531–4537

    CAS  PubMed  Google Scholar 

  35. Lee KS, Groshong SD, Cool CD, Kleinschmidt-DeMasters BK, van Dyk LF (2009) Murine gammaherpesvirus 68 infection of IFNgamma unresponsive mice: a small animal model for gammaherpesvirus-associated B-cell lymphoproliferative disease. Cancer Res 69:5481–5489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Callan MF, Steven N, Krausa P, Wilson JD, Moss PA, Gillespie GM, Bell JI, Rickinson AB, McMichael AJ (1996) Large clonal expansions of CD8+ T cells in acute infectious mononucleosis. Nat Med 2:906–911

    Article  CAS  PubMed  Google Scholar 

  37. Callan MF, Tan L, Annels N, Ogg GS, Wilson JD, O’Callaghan CA, Steven N, McMichael AJ, Rickinson AB (1998) Direct visualization of antigen-specific CD8+ T cells during the primary immune response to Epstein-Barr virus in vivo. J Exp Med 187:1395–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tripp RA, Hamilton-Easton AM, Cardin RD, Nguyen P, Behm FG, Woodland DL, Doherty PC, Blackman MA (1997) Pathogenesis of an infectious mononucleosis-like disease induced by a murine gamma-herpesvirus: role for a viral superantigen? J Exp Med 185:1641–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Doherty PC, Tripp RA, Hamilton-Easton AM, Cardin RD, Woodland DL, Blackman MA (1997) Tuning into immunological dissonance: an experimental model for infectious mononucleosis. Curr Opin Immunol 9:477–483

    Article  CAS  PubMed  Google Scholar 

  40. Vergnon JM, Vincent M, de The G, Mornex JF, Weynants P, Brune J (1984) Cryptogenic fibrosing alveolitis and Epstein-Barr virus: an association? Lancet 2:768–771

    Article  CAS  PubMed  Google Scholar 

  41. Egan JJ, Woodcock AA, Stewart JP (1997) Viruses and idiopathic pulmonary fibrosis. Eur Respir J 10:1433–1437

    Article  CAS  PubMed  Google Scholar 

  42. Stewart JP, Egan JJ, Ross AJ, Kelly BG, Lok SS, Hasleton PS, Woodcock AA (1999) The detection of Epstein-Barr virus DNA in lung tissue from patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 159:1336–1341

    Article  CAS  PubMed  Google Scholar 

  43. Tsukamoto K, Hayakawa H, Sato A, Chida K, Nakamura H, Miura K (2000) Involvement of Epstein-Barr virus latent membrane protein 1 in disease progression in patients with idiopathic pulmonary fibrosis. Thorax 55:958–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dutia BM, Clarke CJ, Allen DJ, Nash AA (1997) Pathological changes in the spleens of gamma interferon receptor-deficient mice infected with murine gammaherpesvirus: a role for CD8 T cells. J Virol 71:4278–4283

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Vannella KM, Moore BB (2008) Viruses as co-factors for the initiation or exacerbation of lung fibrosis. Fibrogenesis Tissue Repair 1:2

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mora AL, Torres-Gonzalez E, Rojas M, Xu J, Ritzenthaler J, Speck SH, Roman J, Brigham K, Stecenko A (2007) Control of virus reactivation arrests pulmonary herpesvirus-induced fibrosis in IFN-gamma receptor-deficient mice. Am J Respir Crit Care Med 175:1139–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Evans AG, Moser JM, Krug LT, Pozharskaya V, Mora AL, Speck SH (2008) A gammaherpesvirus-secreted activator of Vbeta4+ CD8+ T cells regulates chronic infection and immunopathology. J Exp Med 205:669–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. O’Flaherty BM, Matar CG, Wakeman BS, Garcia A, Wilke CA, Courtney CL, Moore BB, Speck SH (2015) CD8+ T cell response to Gammaherpesvirus infection mediates inflammation and fibrosis in interferon gamma receptor-deficient mice. PLoS One 10:e0135719

    Article  PubMed  PubMed Central  Google Scholar 

  49. Krug LT, Torres-Gonzalez E, Qin Q, Sorescu D, Rojas M, Stecenko A, Speck SH, Mora AL (2010) Inhibition of NF-kappaB signaling reduces virus load and gammaherpesvirus-induced pulmonary fibrosis. Am J Pathol 177:608–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Izbicki G, Segel MJ, Christensen TG, Conner MW, Breuer R (2002) Time course of bleomycin-induced lung fibrosis. Int J Exp Pathol 83:111–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lok SS, Haider Y, Howell D, Stewart JP, Hasleton PS, Egan JJ (2002) Murine gammaherpes virus as a cofactor in the development of pulmonary fibrosis in bleomycin resistant mice. Eur Respir J 20:1228–1232

    Article  CAS  PubMed  Google Scholar 

  52. Luckhardt TR, Coomes SM, Trujillo G, Stoolman JS, Vannella KM, Bhan U, Wilke CA, Moore TA, Toews GB, Hogaboam C, Moore BB (2011) TLR9-induced interferon beta is associated with protection from gammaherpesvirus-induced exacerbation of lung fibrosis. Fibrogenesis Tissue Repair 4:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee KS, Cool CD, van Dyk LF (2009) Murine gammaherpesvirus 68 infection of gamma interferon-deficient mice on a BALB/c background results in acute lethal pneumonia that is dependent on specific viral genes. J Virol 83:11397–11401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Andiman WA, McCarthy P, Markowitz RI, Cormier D, Horstmann DM (1981) Clinical, virologic, and serologic evidence of Epstein-Barr virus infection in association with childhood pneumonia. J Pediatr 99:880–886

    Article  CAS  PubMed  Google Scholar 

  55. Liu QF, Fan ZP, Luo XD, Sun J, Zhang Y, Ding YQ (2010) Epstein-Barr virus-associated pneumonia in patients with post-transplant lymphoproliferative disease after hematopoietic stem cell transplantation. Transpl Infect Dis 12:284–291

    Article  PubMed  Google Scholar 

  56. Krumbholz A, Sandhaus T, Gohlert A, Heim A, Zell R, Egerer R, Breuer M, Straube E, Wutzler P, Sauerbrei A (2010) Epstein-Barr virus-associated pneumonia and bronchiolitis obliterans syndrome in a lung transplant recipient. Med Microbiol Immunol 199:317–322

    Article  PubMed  Google Scholar 

  57. Abughali N, Khiyami A, Birnkrant DJ, Kumar ML (2002) Severe respiratory syncytial virus pneumonia associated with primary Epstein-Barr virus infection. Pediatr Pulmonol 33:395–398

    Article  PubMed  Google Scholar 

  58. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35

    Article  CAS  PubMed  Google Scholar 

  59. Ascherio A, Munch M (2000) Epstein-Barr virus and multiple sclerosis. Epidemiology 11:220–224

    Article  CAS  PubMed  Google Scholar 

  60. Ascherio A, Munger KL, Lunemann JD (2012) The initiation and prevention of multiple sclerosis. Nat Rev Neurol 8:602–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tselis A (2012) Epstein-Barr virus cause of multiple sclerosis. Curr Opin Rheumatol 24:424–428

    Article  PubMed  Google Scholar 

  62. Mackay IR, Carnegie PR, Coates AS (1973) Immunopathological comparisons between experimental autoimmune encephalomyelitis and multiple sclerosis. Clin Exp Immunol 15:471–482

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Swanborg RH (1995) Experimental autoimmune encephalomyelitis in rodents as a model for human demyelinating disease. Clin Immunol Immunopathol 77:4–13

    Article  CAS  PubMed  Google Scholar 

  64. Terry LA, Stewart JP, Nash AA, Fazakerley JK (2000) Murine gammaherpesvirus-68 infection of and persistence in the central nervous system. J Gen Virol 81:2635–2643

    Article  CAS  PubMed  Google Scholar 

  65. Taylor WR, Rasley A, Bost KL, Marriott I (2003) Murine gammaherpesvirus-68 infects microglia and induces high levels of pro-inflammatory cytokine production. J Neuroimmunol 136:75–83

    Article  CAS  PubMed  Google Scholar 

  66. Stevenson PG, Doherty PC (1998) Kinetic analysis of the specific host response to a murine gammaherpesvirus. J Virol 72:943–949

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Casiraghi C, Shanina I, Cho S, Freeman ML, Blackman MA, Horwitz MS (2012) Gammaherpesvirus latency accentuates EAE pathogenesis: relevance to Epstein-Barr virus and multiple sclerosis. PLoS Pathog 8:e1002715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Larson JD, Thurman JM, Rubtsov AV, Claypool D, Marrack P, van Dyk LF, Torres RM, Pelanda R (2012) Murine gammaherpesvirus 68 infection protects lupus-prone mice from the development of autoimmunity. Proc Natl Acad Sci U S A 109:E1092–E1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nelson DA, Petty CC, Bost KL (2009) Infection with murine gammaherpesvirus 68 exacerbates inflammatory bowel disease in IL-10-deficient mice. Inflamm Res 58:881–889

    Article  CAS  PubMed  Google Scholar 

  70. Bertalot G, Villanacci V, Gramegna M, Orvieto E, Negrini R, Saleri A, Terraroli C, Ravelli P, Cestari R, Viale G (2001) Evidence of Epstein-Barr virus infection in ulcerative colitis. Dig Liver Dis 33:551–558

    Article  CAS  PubMed  Google Scholar 

  71. Kangro HO, Chong SK, Hardiman A, Heath RB, Walker-Smith JA (1990) A prospective study of viral and mycoplasma infections in chronic inflammatory bowel disease. Gastroenterology 98:549–553

    Article  CAS  PubMed  Google Scholar 

  72. Spieker T, Herbst H (2000) Distribution and phenotype of Epstein-Barr virus-infected cells in inflammatory bowel disease. Am J Pathol 157:51–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Takeda Y, Takada K, Togashi H, Takeda H, Sakano M, Osada Y, Shinzawa H, Takahashi T (2000) Demonstration of Epstein-Barr virus localized in the colonic and ileal mucosa of a patient with ulcerative colitis. Gastrointest Endosc 51:205–209

    Article  CAS  PubMed  Google Scholar 

  74. Van Kruiningen HJ, Poulin M, Garmendia AE, Desreumaux P, Colombel JF, De Hertogh G, Geboes K, Vermeire S, Tsongalis GJ (2007) Search for evidence of recurring or persistent viruses in Crohn’s disease. APMIS 115:962–968

    Article  PubMed  Google Scholar 

  75. Smith KA, Efstathiou S, Cooke A (2007) Murine gammaherpesvirus-68 infection alters self-antigen presentation and type 1 diabetes onset in NOD mice. J Immunol 179:7325–7333

    Article  CAS  PubMed  Google Scholar 

  76. Pane JA, Coulson BS (2015) Lessons from the mouse: potential contribution of bystander lymphocyte activation by viruses to human type 1 diabetes. Diabetologia 58:1149–1159

    Article  CAS  PubMed  Google Scholar 

  77. Gale EA (2012) Viruses and type 1 diabetes: ignorance acquires a better vocabulary. Clin Exp Immunol 168:1–4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Coppieters KT, Boettler T, von Herrath M (2012) Virus infections in type 1 diabetes. Cold Spring Harb Perspect Med 2:a007682

    Article  PubMed  PubMed Central  Google Scholar 

  79. Martin AP, Alexander-Brett JM, Canasto-Chibuque C, Garin A, Bromberg JS, Fremont DH, Lira SA (2007) The chemokine binding protein M3 prevents diabetes induced by multiple low doses of streptozotocin. J Immunol 178:4623–4631

    Article  CAS  PubMed  Google Scholar 

  80. Gangadharan B, Dutia BM, Rhind SM, Nash AA (2009) Murid herpesvirus-4 induces chronic inflammation of intrahepatic bile ducts in mice deficient in gamma-interferon signalling. Hepatol Res 39:187–194

    Article  PubMed  Google Scholar 

  81. Spiekerkoetter E, Alvira CM, Kim YM, Bruneau A, Pricola KL, Wang L, Ambartsumian N, Rabinovitch M (2008) Reactivation of gammaHV68 induces neointimal lesions in pulmonary arteries of S100A4/Mts1-overexpressing mice in association with degradation of elastin. Am J Physiol Lung Cell Mol Physiol 294:L276–L289

    Article  CAS  PubMed  Google Scholar 

  82. Kim YM, Haghighat L, Spiekerkoetter E, Sawada H, Alvira CM, Wang L, Acharya S, Rodriguez-Colon G, Orton A, Zhao M, Rabinovitch M (2011) Neutrophil elastase is produced by pulmonary artery smooth muscle cells and is linked to neointimal lesions. Am J Pathol 179:1560–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Peacock JW, Bost KL (2000) Infection of intestinal epithelial cells and development of systemic disease following gastric instillation of murine gammaherpesvirus-68. J Gen Virol 81:421–429

    Article  CAS  PubMed  Google Scholar 

  84. Olivadoti MD, Weinberg JB, Toth LA, Opp MR (2011) Sleep and fatigue in mice infected with murine gammaherpesvirus 68. Brain Behav Immun 25:696–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Speck SH, Ganem D (2010) Viral latency and its regulation: lessons from the gamma-herpesviruses. Cell Host Microbe 8:100–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant (CA167065, J.C.F) from the National Cancer Institute of the National Institutes of Health and the grant (81371825, X.Z.L) from Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaozhen Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Dong, S., Forrest, J.C., Liang, X. (2017). Murine Gammaherpesvirus 68: A Small Animal Model for Gammaherpesvirus-Associated Diseases. In: Cai, Q., Yuan, Z., Lan, K. (eds) Infectious Agents Associated Cancers: Epidemiology and Molecular Biology. Advances in Experimental Medicine and Biology, vol 1018. Springer, Singapore. https://doi.org/10.1007/978-981-10-5765-6_14

Download citation

Publish with us

Policies and ethics