Skip to main content

Roles of RUNX Complexes in Immune Cell Development

  • Chapter
  • First Online:
Book cover RUNX Proteins in Development and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 962))

Abstract

During hematopoiesis, a variety of cells are generated from stem cells through successive rounds of cell fate determination processes. Studies in the last two decades have demonstrated the involvement of Runx transcription factor family members in differentiation of multiple types of hematopoietic cells. Along with evolutionary conservation, the Runx

family is considered to be one of the ancestral regulators of hematopoiesis. It is conceivable that the Runx family is involved in shaping the immune system, which is then comprised of innate and acquired lymphoid cells in vertebrates. In this chapter, we will first summarize roles of Runx proteins during the development of T- and B-lymphocytes, which appeared later during evolution and express antigen specific receptors as a result of DNA recombination processes. We also discuss the recent findings that have unraveled the functions of Runx during differentiation of innate lymphoid cells (ILCs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bain, G., Maandag, E. C., Izon, D. J., Amsen, D., Kruisbeek, A. M., Weintraub, B. C., et al. (1994). E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell, 79(5), 885–892.

    Article  CAS  PubMed  Google Scholar 

  • Braun, T., & Woollard, A. (2009). RUNX factors in development: Lessons from invertebrate model systems. Blood Cells, Molecules & Diseases, 43(1), 43–48. doi:10.1016/j.bcmd.2009.05.001.

    Article  CAS  Google Scholar 

  • Bruno, L., Mazzarella, L., Hoogenkamp, M., Hertweck, A., Cobb, B. S., Sauer, S., et al. (2009). Runx proteins regulate Foxp3 expression. The Journal of Experimental Medicine, 206(11), 2329–2337. doi:10.1084/jem.20090226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Califano, D., Cho, J. J., Uddin, M. N., Lorentsen, K. J., Yang, Q., Bhandoola, A., et al. (2015). Transcription factor Bcl11b controls identity and function of mature Type 2 innate lymphoid cells. Immunity, 43(2), 354–368. doi:10.1016/j.immuni.2015.07.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cella, M., Fuchs, A., Vermi, W., Facchetti, F., Otero, K., Lennerz, J. K., et al. (2009). A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature, 457(7230), 722–725. doi:10.1038/nature07537.

    Article  CAS  PubMed  Google Scholar 

  • Cella, M., Miller, H., & Song, C. (2014). Beyond NK cells: The expanding universe of innate lymphoid cells. Frontiers in Immunology, 5, 282. doi:10.3389/fimmu.2014.00282.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cherrier, M., Sawa, S., & Eberl, G. (2012). Notch, Id2, and RORgammat sequentially orchestrate the fetal development of lymphoid tissue inducer cells. The Journal of Experimental Medicine, 209(4), 729–740. doi:10.1084/jem.20111594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciofani, M., Madar, A., Galan, C., Sellars, M., Mace, K., Pauli, F., et al. (2012). A validated regulatory network for Th17 cell specification. Cell, 151(2), 289–303. doi:10.1016/j.cell.2012.09.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Constantinides, M. G., McDonald, B. D., Verhoef, P. A., & Bendelac, A. (2014). A committed precursor to innate lymphoid cells. Nature, 508(7496), 397–401. doi:10.1038/nature13047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cortez, V. S., Robinette, M. L., & Colonna, M. (2015). Innate lymphoid cells: New insights into function and development. Current Opinion in Immunology, 32, 71–77. doi:10.1016/j.coi.2015.01.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daussy, C., Faure, F., Mayol, K., Viel, S., Gasteiger, G., Charrier, E., et al. (2014). T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. The Journal of Experimental Medicine, 211(3), 563–577. doi:10.1084/jem.20131560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Decker, T., Pasca di Magliano, M., McManus, S., Sun, Q., Bonifer, C., Tagoh, H., & Busslinger, M. (2009). Stepwise activation of enhancer and promoter regions of the B cell commitment gene Pax5 in early lymphopoiesis. Immunity, 30(4), 508–520. doi:10.1016/j.immuni.2009.01.012.

    Article  CAS  PubMed  Google Scholar 

  • Djuretic, I. M., Levanon, D., Negreanu, V., Groner, Y., Rao, A., & Ansel, K. M. (2007). Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells. Nature Immunology, 8(2), 145–153.

    Article  CAS  PubMed  Google Scholar 

  • Eberl, G., Colonna, M., Di Santo, J. P., & McKenzie, A. N. (2015). Innate lymphoid cells. Innate lymphoid cells: A new paradigm in immunology. Science, 348(6237), aaa6566. doi:10.1126/science.aaa6566.

    Article  PubMed  CAS  Google Scholar 

  • Ebihara, T., Song, C., Ryu, S. H., Plougastel-Douglas, B., Yang, L., Levanon, D., et al. (2015). Runx3 specifies lineage commitment of innate lymphoid cells. Nature Immunology, 16(11), 1124–1133. doi:10.1038/ni.3272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egawa, T., & Littman, D. R. (2008). ThPOK acts late in specification of the helper T cell lineage and suppresses Runx-mediated commitment to the cytotoxic T cell lineage. Nature Immunology, 9(10), 1131–1139. doi:10.1038/ni.1652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egawa, T., Eberl, G., Taniuchi, I., Benlagha, K., Geissmann, F., Hennighausen, L., et al. (2005). Genetic evidence supporting selection of the Valpha14i NKT cell lineage from double-positive thymocyte precursors. Immunity, 22(6), 705–716. doi:10.1016/j.immuni.2005.03.011.

    Article  CAS  PubMed  Google Scholar 

  • Egawa, T., Tillman, R. E., Naoe, Y., Taniuchi, I., & Littman, D. R. (2007). The role of the Runx transcription factors in thymocyte differentiation and in homeostasis of naive T cells. The Journal of Experimental Medicine, 204(8), 1945–1957. doi:10.1084/jem.20070133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellmeier, W., & Taniuchi, I. (2014). The role of BTB-zinc finger transcription factors during T cell development and in the regulation of T cell-mediated immunity. Current Topics in Microbiology and Immunology, 381, 21–49. doi:10.1007/82_2014_374.

    PubMed  Google Scholar 

  • Ellmeier, W., Sunshine, M. J., Losos, K., Hatam, F., & Littman, D. R. (1997). An enhancer that directs lineage-specific expression of CD8 in positively selected thymocytes and mature T cells. Immunity, 7(4), 537–547.

    Article  CAS  PubMed  Google Scholar 

  • Ellmeier, W., Sunshine, M. J., Losos, K., & Littman, D. R. (1998). Multiple developmental stage-specific enhancers regulate CD8 expression in developing thymocytes and in thymus-independent T cells. Immunity, 9(4), 485–496.

    Article  CAS  PubMed  Google Scholar 

  • Ellmeier, W., Sawada, S., & Littman, D. R. (1999). The regulation of CD4 and CD8 coreceptor gene expression during T cell development. Annual Review of Immunology, 17, 523–554.

    Article  CAS  PubMed  Google Scholar 

  • Erman, B., Cortes, M., Nikolajczyk, B. S., Speck, N. A., & Sen, R. (1998). ETS-core binding factor: A common composite motif in antigen receptor gene enhancers. Molecular and Cellular Biology, 18(3), 1322–1330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fossett, N., & Schulz, R. A. (2001). Functional conservation of hematopoietic factors in Drosophila and vertebrates. Differentiation; Research in Biological Diversity, 69(2–3), 83–90. doi:10.1046/j.1432-0436.2001.690202.x.

    Article  CAS  PubMed  Google Scholar 

  • Fuchs, A., Vermi, W., Lee, J. S., Lonardi, S., Gilfillan, S., Newberry, R. D., et al. (2013). Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-gamma-producing cells. Immunity, 38(4), 769–781. doi:10.1016/j.immuni.2013.02.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gangadharan, D., Lambolez, F., Attinger, A., Wang-Zhu, Y., Sullivan, B. A., & Cheroutre, H. (2006). Identification of pre- and postselection TCRalphabeta+ intraepithelial lymphocyte precursors in the thymus. Immunity, 25(4), 631–641. doi:10.1016/j.immuni.2006.08.018.

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger, G., Fan, X., Dikiy, S., Lee, S. Y., & Rudensky, A. Y. (2015). Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science, 350(6263), 981–985. doi:10.1126/science.aac9593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon, S. M., Chaix, J., Rupp, L. J., Wu, J., Madera, S., Sun, J. C., et al. (2012). The transcription factors T-bet and Eomes control key checkpoints of natural killer cell maturation. Immunity, 36(1), 55–67. doi:10.1016/j.immuni.2011.11.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Growney, J. D., Shigematsu, H., Li, Z., Lee, B. H., Adelsperger, J., Rowan, R., et al. (2005). Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood, 106(2), 494–504. doi:10.1182/blood-2004-08-3280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grueter, B., Petter, M., Egawa, T., Laule-Kilian, K., Aldrian, C. J., Wuerch, A., Ludwig, Y., Fukuyama, H., Wardemann, H., Waldschuetz, R., Moroy, T., Taniuchi, I., Steimle, V., Littman, D. R., & Ehlers, M. (2005). Runx3 regulates integrin alpha E/CD103 and CD4 expression during development of CD4−/CD8+ T cells. Journal of Immunology (Baltimore, Md: 1950), 175(3), 1694–1705. doi:175/3/1694 [pii].

    Google Scholar 

  • Harrington, L. E., Hatton, R. D., Mangan, P. R., Turner, H., Murphy, T. L., Murphy, K. M., & Weaver, C. T. (2005). Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nature Immunology, 6(11), 1123–1132. doi:10.1038/ni1254.

    Article  CAS  PubMed  Google Scholar 

  • Hassan, H., Sakaguchi, S., Tenno, M., Kopf, A., Boucheron, N., Carpenter, A. C., Egawa, T., Taniuchi I., & Ellmeier, W. (2011). Cd8 enhancer E8I and Runx factors regulate CD8alpha expression in activated CD8+ T cells. Proceedings of the National Academy of Sciences of the United States of America, 108(45), 18330–18335. doi:1105835108 [pii] 10.1073/pnas.1105835108.

  • He, X., Dave, V. P., Zhang, Y., Hua, X., Nicolas, E., Xu, W., Roe, B. A., & Kappes, D. J. (2005). The zinc finger transcription factor Th-POK regulates CD4 versus CD8 T-cell lineage commitment. Nature, 433(7028), 826–833. doi:nature03338 [pii] 10.1038/nature03338.

  • He, X., Park, K., Wang, H., He, X., Zhang, Y., Hua, X., et al. (2008). CD4-CD8 lineage commitment is regulated by a silencer element at the ThPOK transcription-factor locus. Immunity, 28(3), 346–358.

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Munain, C., & Krangel, M. S. (1995). c-Myb and core-binding factor/PEBP2 display functional synergy but bind independently to adjacent sites in the T-cell receptor delta enhancer. Molecular and Cellular Biology, 15(6), 3090–3099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez-Munain, C., Roberts, J. L., & Krangel, M. S. (1998). Cooperation among multiple transcription factors is required for access to minimal T-cell receptor alpha-enhancer chromatin in vivo. Molecular and Cellular Biology, 18(6), 3223–3233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollenhorst, P. C., Shah, A. A., Hopkins, C., & Graves, B. J. (2007). Genome-wide analyses reveal properties of redundant and specific promoter occupancy within the ETS gene family. Genes & Development, 21(15), 1882–1894. doi:10.1101/gad.1561707.

    Article  CAS  Google Scholar 

  • Hostert, A., Garefalaki, A., Mavria, G., Tolaini, M., Roderick, K., Norton, T., et al. (1998). Hierarchical interactions of control elements determine CD8alpha gene expression in subsets of thymocytes and peripheral T cells. Immunity, 9(4), 497–508.

    Article  CAS  PubMed  Google Scholar 

  • Hoyler, T., Klose, C. S., Souabni, A., Turqueti-Neves, A., Pfeifer, D., Rawlins, E. L., et al. (2012). The transcription factor GATA-3 controls cell fate and maintenance of Type 2 innate lymphoid cells. Immunity, 37(4), 634–648. doi:10.1016/j.immuni.2012.06.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hozumi, K., Mailhos, C., Negishi, N., Hirano, K., Yahata, T., Ando, K., et al. (2008). Delta-like 4 is indispensable in thymic environment specific for T cell development. Journal of Experimental Medicine, 205(11), 2507–2513. doi:10.1084/jem.20080134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsiang, Y. H., Spencer, D., Wang, S., Speck, N. A., & Raulet, D. H. (1993). The role of viral enhancer “core” motif-related sequences in regulating T cell receptor-gamma and -delta gene expression. Journal of Immunology (Baltimore, Md: 1950), 150(9), 3905–3916.

    CAS  Google Scholar 

  • Ichikawa, M., Asai, T., Saito, T., Seo, S., Yamazaki, I., Yamagata, T., et al. (2004). AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nature Medicine, 10(3), 299–304. doi:10.1038/nm997.

    Article  CAS  PubMed  Google Scholar 

  • Ikawa, T., Hirose, S., Masuda, K., Kakugawa, K., Satoh, R., Shibano-Satoh, A., et al. (2010). An essential developmental checkpoint for production of the T cell lineage. Science, 329(5987), 93–96. doi:10.1126/science.1188995.

    Article  CAS  PubMed  Google Scholar 

  • Ivanov, I. I., McKenzie, B. S., Zhou, L., Tadokoro, C. E., Lepelley, A., Lafaille, J. J., et al. (2006). The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell, 126(6), 1121–1133. doi:10.1016/j.cell.2006.07.035.

    Article  CAS  PubMed  Google Scholar 

  • Josefowicz, S. Z., Lu, L. F., & Rudensky, A. Y. (2012). Regulatory T cells: Mechanisms of differentiation and function. Annual Review of Immunology, 30, 531–564. doi:10.1146/annurev.immunol.25.022106.141623.

    Article  CAS  PubMed  Google Scholar 

  • Kappes, D. J., & He, X. (2006). Role of the transcription factor Th-POK in CD4:CD8 lineage commitment. Immunological Reviews, 209, 237–252. doi:IMR344 [pii] 10.1111/j.0105-2896.2006.00344.x.

  • Kee, B. L., & Murre, C. (1998). Induction of early B cell factor (EBF) and multiple B lineage genes by the basic helix-loop-helix transcription factor E12. The Journal of Experimental Medicine, 188(4), 699–713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, B., Sasaki, Y., & Egawa, T. (2015). Restriction of nonpermissive RUNX3 protein expression in T lymphocytes by the Kozak sequence. Journal of Immunology, 195(4), 1517–1523. doi:10.4049/jimmunol.1501039.

    Article  CAS  Google Scholar 

  • Kiss, E. A., Vonarbourg, C., Kopfmann, S., Hobeika, E., Finke, D., Esser, C., & Diefenbach, A. (2011). Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science, 334(6062), 1561–1565. doi:10.1126/science.1214914.

    Article  CAS  PubMed  Google Scholar 

  • Kitoh, A., Ono, M., Naoe, Y., Ohkura, N., Yamaguchi, T., Yaguchi, H., et al. (2009). Indispensable role of the Runx1-Cbfbeta transcription complex for in vivo-suppressive function of FoxP3+ regulatory T cells. Immunity, 31(4), 609–620.

    Article  CAS  PubMed  Google Scholar 

  • Klose, C. S., Kiss, E. A., Schwierzeck, V., Ebert, K., Hoyler, T., d’Hargues, Y., et al. (2013). A T-bet gradient controls the fate and function of CCR6-RORgammat+ innate lymphoid cells. Nature, 494(7436), 261–265. doi:10.1038/nature11813.

    Article  CAS  PubMed  Google Scholar 

  • Klose, C. S., Flach, M., Mohle, L., Rogell, L., Hoyler, T., Ebert, K., et al. (2014). Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell, 157(2), 340–356. doi:10.1016/j.cell.2014.03.030.

    Article  CAS  PubMed  Google Scholar 

  • Klunker, S., Chong, M. M., Mantel, P. Y., Palomares, O., Bassin, C., Ziegler, M., et al. (2009). Transcription factors RUNX1 and RUNX3 in the induction and suppressive function of Foxp3+ inducible regulatory T cells. The Journal of Experimental Medicine, 206(12), 2701–2715. doi:10.1084/jem.20090596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch, U., Fiorini, E., Benedito, R., Besseyrias, V., Schuster-Gossler, K., Pierres, M., et al. (2008). Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment. The Journal of Experimental Medicine, 205(11), 2515–2523. doi:10.1084/jem.20080829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohu, K., Sato, T., Ohno, S., Hayashi, K., Uchino, R., Abe, N., Nakazato, M., Yoshida, N., Kikuchi, T., Iwakura, Y., Inoue, Y., Watanabe, T., Habu, S., & Satake, M. (2005). Overexpression of the Runx3 transcription factor increases the proportion of mature thymocytes of the CD8 single-positive lineage. Journal of Immunology (Baltimore, Md: 1950), 174(5), 2627–2636. doi:174/5/2627 [pii].

    Google Scholar 

  • Kohu, K., Ohmori, H., Wong, W. F., Onda, D., Wakoh, T., Kon, S., et al. (2009). The Runx3 transcription factor augments Th1 and down-modulates Th2 phenotypes by interacting with and attenuating GATA3. Journal of Immunology, 183(12), 7817–7824. doi:10.4049/jimmunol.0802527.

    Article  CAS  Google Scholar 

  • Kronenberg, M., & Rudensky, A. (2005). Regulation of immunity by self-reactive T cells. Nature, 435(7042), 598–604. doi:10.1038/nature03725.

    Article  CAS  PubMed  Google Scholar 

  • Laiosa, C. V., Stadtfeld, M., & Graf, T. (2006). Determinants of lymphoid-myeloid lineage diversification. Annual Review of Immunology, 24, 705–738. doi:10.1146/annurev.immunol.24.021605.090742.

    Article  CAS  PubMed  Google Scholar 

  • Lambolez, F., Kronenberg, M., & Cheroutre, H. (2007). Thymic differentiation of TCR alpha beta(+) CD8 alpha alpha(+) IELs. Immunological Reviews, 215, 178–188. doi:10.1111/j.1600-065X.2006.00488.x.

    Article  CAS  PubMed  Google Scholar 

  • Lebestky, T., Chang, T., Hartenstein, V., & Banerjee, U. (2000). Specification of Drosophila hematopoietic lineage by conserved transcription factors. Science, 288(5463), 146–149.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J. S., Cella, M., McDonald, K. G., Garlanda, C., Kennedy, G. D., Nukaya, M., et al. (2012). AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nature Immunology, 13(2), 144–151. doi:10.1038/ni.2187.

    Article  CAS  Google Scholar 

  • Leishman, A. J., Naidenko, O. V., Attinger, A., Koning, F., Lena, C. J., Xiong, Y., et al. (2001). T cell responses modulated through interaction between CD8alphaalpha and the nonclassical MHC class I molecule, TL. Science, 294(5548), 1936–1939. doi:10.1126/science.1063564.

    Article  CAS  PubMed  Google Scholar 

  • Leung, R. K., Thomson, K., Gallimore, A., Jones, E., Van den Broek, M., Sierro, S., et al. (2001). Deletion of the CD4 silencer element supports a stochastic mechanism of thymocyte lineage commitment. Nature Immunology, 2(12), 1167–1173.

    Article  CAS  PubMed  Google Scholar 

  • Levanon, D., Negreanu, V., Lotem, J., Bone, K. R., Brenner, O., Leshkowitz, D., & Groner, Y. (2014). Transcription factor Runx3 regulates interleukin-15-dependent natural killer cell activation. Molecular and Cellular Biology, 34(6), 1158–1169. doi:10.1128/MCB.01202-13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, L., Leid, M., & Rothenberg, E. V. (2010). An early T cell lineage commitment checkpoint dependent on the transcription factor Bcl11b. Science, 329(5987), 89–93. doi:10.1126/science.1188989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, L., Zhang, J. A., Dose, M., Kueh, H. Y., Mosadeghi, R., Gounari, F., & Rothenberg, E. V. (2013). A far downstream enhancer for murine Bcl11b controls its T-cell specific expression. Blood, 122(6), 902–911. doi:10.1182/blood-2012-08-447839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, H., & Grosschedl, R. (1995). Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature, 376(6537), 263–267. doi:10.1038/376263a0.

    Article  CAS  PubMed  Google Scholar 

  • Lin, Y. C., Jhunjhunwala, S., Benner, C., Heinz, S., Welinder, E., Mansson, R., et al. (2010). A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate. Nature Immunology, 11(7), 635–643. doi:10.1038/ni.1891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luckey, M. A., Kimura, M. Y., Waickman, A. T., Feigenbaum, L., Singer, A., & Park, J. H. (2014). The transcription factor ThPOK suppresses Runx3 and imposes CD4(+) lineage fate by inducing the SOCS suppressors of cytokine signaling. Nature Immunology, 15(7), 638–645. doi:10.1038/ni.2917.

    Article  CAS  PubMed  Google Scholar 

  • Lukin, K., Fields, S., Lopez, D., Cherrier, M., Ternyak, K., Ramirez, J., et al. (2010). Compound haploinsufficiencies of Ebf1 and Runx1 genes impede B cell lineage progression. Proceedings of the National Academy of Sciences of the United States of America, 107(17), 7869–7874. doi:10.1073/pnas.1003525107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier, H., Ostraat, R., Gao, H., Fields, S., Shinton, S. A., Medina, K. L., et al. (2004). Early B cell factor cooperates with Runx1 and mediates epigenetic changes associated with mb-1 transcription. Nature Immunology, 5(10), 1069–1077. doi:10.1038/ni1119.

    Article  CAS  PubMed  Google Scholar 

  • Majumder, K., Bassing, C. H., & Oltz, E. M. (2015). Regulation of Tcrb gene assembly by genetic, epigenetic, and topological mechanisms. Advances in Immunology, 128, 273–306. doi:10.1016/bs.ai.2015.07.001.

    Article  PubMed  Google Scholar 

  • Matthias, P., & Rolink, A. G. (2005). Transcriptional networks in developing and mature B cells. Nature Reviews Immunology, 5(6), 497–508. doi:10.1038/nri1633.

    Article  CAS  PubMed  Google Scholar 

  • Mikkola, I., Heavey, B., Horcher, M., & Busslinger, M. (2002). Reversion of B cell commitment upon loss of Pax5 expression. Science, 297(5578), 110–113. doi:10.1126/science.1067518.

    Article  CAS  PubMed  Google Scholar 

  • Moro, K., Yamada, T., Tanabe, M., Takeuchi, T., Ikawa, T., Kawamoto, H., et al. (2010). Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature, 463(7280), 540–544. doi:10.1038/nature08636.

    Article  CAS  PubMed  Google Scholar 

  • Nakayamada, S., Takahashi, H., Kanno, Y., & O’Shea, J. J. (2012). Helper T cell diversity and plasticity. Current Opinion in Immunology, 24(3), 297–302. doi:10.1016/j.coi.2012.01.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naoe, Y., Setoguchi, R., Akiyama, K., Muroi, S., Kuroda, M., Hatam, F., et al. (2007). Repression of interleukin-4 in T helper type 1 cells by Runx/Cbf beta binding to the Il4 silencer. The Journal of Experimental Medicine, 204(8), 1749–1755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neill, D. R., Wong, S. H., Bellosi, A., Flynn, R. J., Daly, M., Langford, T. K., et al. (2010). Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature, 464(7293), 1367–1370. doi:10.1038/nature08900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nutt, S. L., Heavey, B., Rolink, A. G., & Busslinger, M. (1999). Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature, 401(6753), 556–562. doi:10.1038/44076.

    Article  CAS  PubMed  Google Scholar 

  • Oestreich, K. J., Cobb, R. M., Pierce, S., Chen, J., Ferrier, P., & Oltz, E. M. (2006). Regulation of TCRbeta gene assembly by a promoter/enhancer holocomplex. Immunity, 24(4), 381–391. doi:10.1016/j.immuni.2006.02.009.

    Article  CAS  PubMed  Google Scholar 

  • Ohkura, N., Kitagawa, Y., & Sakaguchi, S. (2013). Development and maintenance of regulatory T cells. Immunity, 38(3), 414–423. doi:10.1016/j.immuni.2013.03.002.

    Article  CAS  PubMed  Google Scholar 

  • Ohno, S., Sato, T., Kohu, K., Takeda, K., Okumura, K., Satake, M., & Habu, S. (2008). Runx proteins are involved in regulation of CD122, Ly49 family and IFN-gamma expression during NK cell differentiation. International Immunology, 20(1), 71–79. doi:10.1093/intimm/dxm120.

    Article  CAS  PubMed  Google Scholar 

  • Okuda, T., van Deursen, J., Hiebert, S. W., Grosveld, G., & Downing, J. R. (1996). AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell, 84(2), 321–330.

    Article  CAS  PubMed  Google Scholar 

  • Ono, M., Yaguchi, H., Ohkura, N., Kitabayashi, I., Nagamura, Y., Nomura, T., et al. (2007). Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature, 446(7136), 685–689. doi:10.1038/nature05673.

    Article  CAS  PubMed  Google Scholar 

  • Park, H., Li, Z., Yang, X. O., Chang, S. H., Nurieva, R., Wang, Y. H., et al. (2005). A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nature Immunology, 6(11), 1133–1141. doi:10.1038/ni1261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, J. H., Adoro, S., Guinter, T., Erman, B., Alag, A. S., Catalfamo, M., Kimura, M. Y., Cui, Y., Lucas, P. J., Gress, R. E., Kubo, M., Hennighausen, L., Feigenbaum, L., & Singer, A. (2010). Signaling by intrathymic cytokines, not T cell antigen receptors, specifies CD8 lineage choice and promotes the differentiation of cytotoxic-lineage T cells. Nature Immunology, 11(3), 257–264. doi:ni.1840 [pii] 10.1038/ni.1840.

  • Pobezinsky, L. A., Angelov, G. S., Tai, X., Jeurling, S., Van Laethem, F., Feigenbaum, L., et al. (2012). Clonal deletion and the fate of autoreactive thymocytes that survive negative selection. Nature Immunology, 13(6), 569–578. doi:10.1038/ni.2292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porritt, H. E., Rumfelt, L. L., Tabrizifard, S., Schmitt, T. M., Zuniga-Pflucker, J. C., & Petrie, H. T. (2004). Heterogeneity among DN1 prothymocytes reveals multiple progenitors with different capacities to generate T cell and non-T cell lineages. Immunity, 20(6), 735–745. doi:10.1016/j.immuni.2004.05.004.

    Article  CAS  PubMed  Google Scholar 

  • Possot, C., Schmutz, S., Chea, S., Boucontet, L., Louise, A., Cumano, A., & Golub, R. (2011). Notch signaling is necessary for adult, but not fetal, development of RORgammat(+) innate lymphoid cells. Nature Immunology, 12(10), 949–958. doi:10.1038/ni.2105.

    Article  CAS  PubMed  Google Scholar 

  • Redondo, J. M., Pfohl, J. L., & Krangel, M. S. (1991). Identification of an essential site for transcriptional activation within the human T-cell receptor delta enhancer. Molecular and Cellular Biology, 11(11), 5671–5680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolink, A. G., Nutt, S. L., Melchers, F., & Busslinger, M. (1999). Long-term in vivo reconstitution of T-cell development by Pax5-deficient B-cell progenitors. Nature, 401(6753), 603–606. doi:10.1038/44164.

    Article  CAS  PubMed  Google Scholar 

  • Rothenberg, E. V., Moore, J. E., & Yui, M. A. (2008). Launching the T-cell-lineage developmental programme. Nature Reviews Immunology, 8(1), 9–21. doi:10.1038/nri2232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudra, D., Egawa, T., Chong, M. M., Treuting, P., Littman, D. R., & Rudensky, A. Y. (2009). Runx-CBFbeta complexes control expression of the transcription factor Foxp3 in regulatory T cells. Nature Immunology, 10(11), 1170–1177. doi:10.1038/ni.1795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakaguchi, S., Hombauer, M., Hassan, H., Tanaka, H., Yasmin, N., Naoe, Y., et al. (2015). A novel Cd8-cis-regulatory element preferentially directs expression in CD44hiCD62L+ CD8+ T cells and in CD8alphaalpha+ dendritic cells. Journal of Leukocyte Biology, 97(4), 635–644. doi:10.1189/jlb.1HI1113-597RR.

    Article  CAS  PubMed  Google Scholar 

  • Sanos, S. L., Bui, V. L., Mortha, A., Oberle, K., Heners, C., Johner, C., & Diefenbach, A. (2009). RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nature Immunology, 10(1), 83–91. doi:10.1038/ni.1684.

    Article  CAS  PubMed  Google Scholar 

  • Sato, T., Ohno, S., Hayashi, T., Sato, C., Kohu, K., Satake, M., & Habu, S. (2005). Dual functions of Runx proteins for reactivating CD8 and silencing CD4 at the commitment process into CD8 thymocytes. Immunity, 22(3), 317–328.

    Article  CAS  PubMed  Google Scholar 

  • Satoh-Takayama, N., Vosshenrich, C. A., Lesjean-Pottier, S., Sawa, S., Lochner, M., Rattis, F., et al. (2008). Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity, 29(6), 958–970. doi:10.1016/j.immuni.2008.11.001.

    Article  CAS  PubMed  Google Scholar 

  • Satpathy, A. T., Briseno, C. G., Cai, X., Michael, D. G., Chou, C., Hsiung, S., et al. (2014). Runx1 and Cbfbeta regulate the development of Flt3+ dendritic cell progenitors and restrict myeloproliferative disorder. Blood, 123(19), 2968–2977. doi:10.1182/blood-2013-11-539643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawa, S., Cherrier, M., Lochner, M., Satoh-Takayama, N., Fehling, H. J., Langa, F., et al. (2010). Lineage relationship analysis of RORgammat+ innate lymphoid cells. Science, 330(6004), 665–669. doi:10.1126/science.1194597.

    Article  CAS  PubMed  Google Scholar 

  • Sawa, S., Lochner, M., Satoh-Takayama, N., Dulauroy, S., Berard, M., Kleinschek, M., et al. (2011). RORgammat+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nature Immunology, 12(4), 320–326. doi:10.1038/ni.2002.

    Article  CAS  PubMed  Google Scholar 

  • Sawada, S., Scarborough, J. D., Killeen, N., & Littman, D. R. (1994). A lineage-specific transcriptional silencer regulates CD4 gene expression during T lymphocyte development. Cell, 77(6), 917–929.

    Article  CAS  PubMed  Google Scholar 

  • Seo, W., Ikawa, T., Kawamoto, H., & Taniuchi, I. (2012a). Runx1-Cbfbeta facilitates early B lymphocyte development by regulating expression of Ebf1. The Journal of Experimental Medicine, 209(7), 1255–1262. doi:10.1084/jem.20112745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo, W., Tanaka, H., Miyamoto, C., Levanon, D., Groner, Y., & Taniuchi, I. (2012b). Roles of VWRPY motif-mediated gene repression by Runx proteins during T-cell development. Immunology and Cell Biology, 90(8), 827–830. doi:10.1038/icb.2012.6 icb20126 [pii].

  • Serafini, N., Klein Wolterink, R. G., Satoh-Takayama, N., Xu, W., Vosshenrich, C. A., Hendriks, R. W., & Di Santo, J. P. (2014). Gata3 drives development of RORgammat+ group 3 innate lymphoid cells. The Journal of Experimental Medicine, 211(2), 199–208. doi:10.1084/jem.20131038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Setoguchi, R., Tachibana, M., Naoe, Y., Muroi, S., Akiyama, K., Tezuka, C., Okuda, T., & Taniuchi, I. (2008). Repression of the transcription factor Th-POK by Runx complexes in cytotoxic T cell development. Science, 319(5864), 822–825. doi:319/5864/822 [pii] 10.1126/science.1151844.

  • Siu, G., Wurster, A. L., Duncan, D. D., Soliman, T. M., & Hedrick, S. M. (1994). A transcriptional silencer controls the developmental expression of the CD4 gene. The EMBO Journal, 13(15), 3570–3579.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sojka, D. K., Plougastel-Douglas, B., Yang, L., Pak-Wittel, M. A., Artyomov, M. N., Ivanova, Y., et al. (2014). Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. eLife, 3, e01659. doi:10.7554/eLife.01659.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sonnenberg, G. F., & Artis, D. (2015). Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nature Medicine, 21(7), 698–708. doi:10.1038/nm.3892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spooner, C. J., Lesch, J., Yan, D., Khan, A. A., Abbas, A., Ramirez-Carrozzi, V., et al. (2013). Specification of type 2 innate lymphocytes by the transcriptional determinant Gfi1. Nature Immunology, 14(12), 1229–1236. doi:10.1038/ni.2743.

    Article  CAS  PubMed  Google Scholar 

  • Tachibana, M., Tenno, M., Tezuka, C., Sugiyama, M., Yoshida, H., & Taniuchi, I. (2011). Runx1/Cbfbeta2 complexes are required for lymphoid tissue inducer cell differentiation at two developmental stages. Journal of Immunology, 186(3), 1450–1457. doi:10.4049/jimmunol.1000162.

    Article  CAS  Google Scholar 

  • Takeda, J., Cheng, A., Mauxion, F., Nelson, C. A., Newberry, R. D., Sha, W. C., et al. (1990). Functional analysis of the murine T-cell receptor beta enhancer and characteristics of its DNA-binding proteins. Molecular and Cellular Biology, 10(10), 5027–5035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tani-Ichi, S., Satake, M., & Ikuta, K. (2011). The pre-TCR signal induces transcriptional silencing of the TCRgamma locus by reducing the recruitment of STAT5 and Runx to transcriptional enhancers. International Immunology, 23(9), 553–563. doi:10.1093/intimm/dxr055.

    Article  CAS  PubMed  Google Scholar 

  • Taniuchi, I., Osato, M., Egawa, T., Sunshine, M. J., Bae, S. C., Komori, T., et al. (2002). Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell, 111(5), 621–633.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Q., Stacy, T., Binder, M., Marin-Padilla, M., Sharpe, A. H., & Speck, N. A. (1996a). Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 93(8), 3444–3449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Q., Stacy, T., Miller, J. D., Lewis, A. F., Gu, T. L., Huang, X., et al. (1996b). The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo. Cell, 87(4), 697–708.

    Article  CAS  PubMed  Google Scholar 

  • Wong, S. H., Walker, J. A., Jolin, H. E., Drynan, L. F., Hams, E., Camelo, A., et al. (2012). Transcription factor RORalpha is critical for nuocyte development. Nature Immunology, 13(3), 229–236. doi:10.1038/ni.2208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woolf, E., Brenner, O., Goldenberg, D., Levanon, D., & Groner, Y. (2007). Runx3 regulates dendritic epidermal T cell development. Developmental Biology, 303(2), 703–714. doi:10.1016/j.ydbio.2006.12.005.

    Article  CAS  PubMed  Google Scholar 

  • Wotton, D., Ghysdael, J., Wang, S., Speck, N. A., & Owen, M. J. (1994). Cooperative binding of Ets-1 and core binding factor to DNA. Molecular and Cellular Biology, 14(1), 840–850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yagi, R., Junttila, I. S., Wei, G., Urban Jr., J. F., Zhao, K., Paul, W. E., & Zhu, J. (2010). The transcription factor GATA3 actively represses RUNX3 protein-regulated production of interferon-gamma. Immunity, 32(4), 507–517. doi:10.1016/j.immuni.2010.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Q., Li, F., Harly, C., Xing, S., Ye, L., Xia, X., et al. (2015). TCF-1 upregulation identifies early innate lymphoid progenitors in the bone marrow. Nature Immunology, 16(10), 1044–1050. doi:10.1038/ni.3248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, X., Wang, Y., Deng, M., Li, Y., Ruhn, K. A., Zhang, C. C., & Hooper, L. V. (2014). The basic leucine zipper transcription factor NFIL3 directs the development of a common innate lymphoid cell precursor. eLife, 3. doi:10.7554/eLife.04406.

  • Zhang, F., Meng, G., & Strober, W. (2008). Interactions among the transcription factors Runx1, RORgammat and Foxp3 regulate the differentiation of interleukin 17-producing T cells. Nature Immunology, 9(11), 1297–1306. doi:10.1038/ni.1663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, Y., Josefowicz, S., Chaudhry, A., Peng, X. P., Forbush, K., & Rudensky, A. Y. (2010). Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature, 463(7282), 808–812. doi:10.1038/nature08750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang, Y., Soriano, P., & Weintraub, H. (1994). The helix-loop-helix gene E2A is required for B cell formation. Cell, 79(5), 875–884.

    Article  CAS  PubMed  Google Scholar 

  • Zou, Y. R., Sunshine, M. J., Taniuchi, I., Hatam, F., Killeen, N., & Littman, D. R. (2001). Epigenetic silencing of CD4 in T cells committed to the cytotoxic lineage. Nature Genetics, 29(3), 332–336. doi:10.1038/ng750.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Taniuchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Ebihara, T., Seo, W., Taniuchi, I. (2017). Roles of RUNX Complexes in Immune Cell Development. In: Groner, Y., Ito, Y., Liu, P., Neil, J., Speck, N., van Wijnen, A. (eds) RUNX Proteins in Development and Cancer. Advances in Experimental Medicine and Biology, vol 962. Springer, Singapore. https://doi.org/10.1007/978-981-10-3233-2_24

Download citation

Publish with us

Policies and ethics