Skip to main content

Evolution of Wild Barley and Barley Improvement

  • Conference paper
  • First Online:
Book cover Advance in Barley Sciences

Abstract

Wild barley, Hordeum spontaneum, the progenitor of cultivated barley, Hordeum vulgare, originated 5.5 million years ago in southwest Asia, is distributed in the Eastern Mediterranean, Balkans, North Africa, Central Asia, and Tibet. H. vulgare, the fourth important world crop, used for animal feed, beer, and human food was domesticated polyphyletically by humans 10,000 years ago in the Neolithic revolution in at least three centers: Fertile Crescent, Central Asia, and Tibet. H. vulgare with thousands of land races and cultivars is widespread where other crops cannot adapt, yet it deteriorated genetically, especially due to pure breeding, and needs genetic reinforcement. H. spontaneum, the best hope for barley improvement, is a hardy ecological generalist, adapted to a wide range of extreme latitudes, altitudes, climates (warm and cold), and soils. Adaptations occur at all levels: genomically, proteomically, and phenomically both regionally and locally. It displays “archipelago” genetic structure, rich genetically, and harbors immense adaptive abiotic and biotic resistances precious to barley and cereal improvement. Sequencing the H. spontaneum genome will reveal huge, mostly untapped, genetic resources. The current global warming stresses H. spontaneum, and so it is imperative to conserve it in situ and ex situ to safeguard its future immense contribution to barley and cereal improvement, thereby helping to fight hunger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Badr, A., Muller, K., Schafer-Pregl, R., Rabey, H. E. L., Effgen, S., Ibrahim, H. H., Pozzi, C., Rohde, W., & Salamini, F. (2000). On the origin and domestication history of barley (Hordeum vulgare). Molecular Biology and Evolution, 17, 499–510.

    Article  PubMed  CAS  Google Scholar 

  • Baek, H. J., Beharav, A., & Nevo, E. (2003). Ecological-genomic diversity of microsatellites in wild barley, Hordeum spontaneum, populations in Jordan. Theoretical and Applied Genetics, 106, 397–410.

    PubMed  CAS  Google Scholar 

  • Baum, B. R., Nevo, E., Johnson, D. A., & Beiles, A. (1997). Genetic diversity in wild barley (Hordeum spontaneum Koch) in the Near East: A molecular analysis using random amplified polymorphic DNA (RAPD). Genetic Resources and Crop Evolution, 44, 147–157.

    Article  Google Scholar 

  • Blattner, F. (2006). Multiple intercontinental dispersals shaped the distribution area of Hordeum (Poaceae). The New Phytologist, 169, 603–614.

    Article  PubMed  CAS  Google Scholar 

  • Blum, A. (1988). Plant breeding for stress environments. Boca Raton: CRC Press.

    Google Scholar 

  • Brown, A. H. D., Zohary, D., & Nevo, E. (1978). Outcrossing rates and heterozygosity in natural populations of Hordeum spontaneum Koch in Israel. Heredity, 41, 49–62.

    Article  Google Scholar 

  • Chabane, K., Ablett, G. A., Cordeiro, G. M., Valkoun, J., & Henry, F. J. (2005). EST versus genomic derived microsatellite markers for genotyping wild and cultivated barley. Genetic Resources and Crop Evolution, 52, 903–909.

    Article  CAS  Google Scholar 

  • Chalmers, K. J., Waugh, R., Waters, J., Forster, B. P., Nevo, E., & Powell, W. (1992). Grain isozyme and ribosomal DNA variability in Hordeum spontaneum populations from Israel. Theoretical and Applied Genetics, 84, 313–322.

    Article  Google Scholar 

  • Chen, G. (2005, February). Drought resistance in wild barley, Hordeum spontaneum, from Israel: physiology, gene identification, and QTL mapping. PhD thesis, University of Haifa, Haifa, Israel.

    Google Scholar 

  • Chen, G., Krugman, T., Fahima, T., Korol, A. B., & Nevo, E. (2002). Comparative study of morphological and physiological traits related to drought resistance between xeric and mesic Hordeum spontaneum lines in Israel. Barley Genetics Newsletter, 32, 22–33.

    CAS  Google Scholar 

  • Chen, G., Sagi, M., Weining, S., Krugman, T., Fahima, T., Korol, A. B., & Nevo, E. (2004a). Wild barley Eibi1 mutation identifies a gene essential for leaf water conservation. Planta, 219, 684–693.

    PubMed  CAS  Google Scholar 

  • Chen, G., Krugman, T., Fahima, T., Zhang, Z., Korol, A. B., & Nevo, E. (2004b). Differential patterns of germination and desiccation tolerance of mesic and xeric wild barley (Hordeum spontaneum) in Israel. Journal of Arid Environments, 56, 95–105.

    Article  CAS  Google Scholar 

  • Chen, G., Suprunova, T., Krugman, T., Fahima, T., & Nevo, E. (2004c). Ecogeographic and genetic determinants of kernel weight and color of wild barley (Hordeum spontaneum) populations in Israel. Seed Science Research, 14, 137–146.

    Article  CAS  Google Scholar 

  • Chen, G., Pourkheirandish, M., Sameri, M., Wang, N., Nair, S., Shi, Y., Li, C., Nevo, E., & Komatsuda, T. (2009). Genetic targeting of candidate genes for drought sensitive gene eibi1 of wild barley (Hordeum spontaneum). Breeding Science, 59, 637–644.

    Article  CAS  Google Scholar 

  • Chen, G., Krugman, T., Fahima, T., Chen, K., Hu, Y., Röder, M., Nevo, E., & Korol, A. B. (2010). Chromosomal regions controlling seedling drought resistance in Israeli wild barley Hordeum spontatneum C. Koch. Genetic Resources and Crop Evolution, 57, 85–99.

    Article  Google Scholar 

  • Chen, G., Komatsuda, T., Ma, J. F., Nawrath, C., Pourkheirandish, M., Tagiri, A., Hu, Y.-G., Sameri, M., Li, X., Zhao, X., Liu, Y., Li, C., Ma, X., Wang, A., Nair, S., Wang, N., Miyao, A., Sakuma, S., Yamaji, N., Zheng, X., & Nevo, E. (2011a). An ATP-binding cassette subfamily G full transporter is essential for the retention of leaf water in both wild barley and rice. Proceedings of the National Academy of Sciences of the United States of America, 108(30), 12354–12359.

    Article  PubMed  CAS  Google Scholar 

  • Chen, G., Komatsuda, T., Ma, J. F., Li, C., Yamaji, N., & Nevo, E. (2011b). A functional cutin matrix is required for plant protection against water loss. Plant Signaling & Behavior, 6, 1297–1299.

    Article  CAS  Google Scholar 

  • Close, T. J., Choi, D. W., Venegas, M., Salvi, S., Tuberosa, R., Ryabushkina, N., Turuspekov, Y., & Nevo, E. (2000, October 22–27). Allelic variation in wild and cultivated barley at the Dhn4 locus, which encodes a major drought-induced and seed protein, DHN4. In 8th International Barley Genetics Symposium, Adelaide, Australia.

    Google Scholar 

  • Cronin, J. K., Bundock, P. C., Henry, R. J., & Nevo, E. (2007). Adaptive climatic molecular evolution in wild barley at the lsa defense locus. Proceedings of the National Academy of Sciences of the United States of America, 104, 2773–2778.

    Article  PubMed  CAS  Google Scholar 

  • Dai, F., Nevo, E., Zhou, M., Wu, D., Chen, Z., Beiles, A., Chen, G., & Zhang, G. (2012). Tibet: One of the centers of origin of cultivated barley (Submitted).

    Google Scholar 

  • Darwin, C. (1859). On the origin of species by means of natural selection. London: Murray.

    Google Scholar 

  • Ellis, R. P., Forster, B. P., Waugh, R., Bonar, N., Handley, L. I., Robinson, D., Gordon, D. C., & Powell, W. (1997). Mapping physiological traits in barley. The New Phytologist, 137, 149–157.

    Article  CAS  Google Scholar 

  • Feldman, M., & Kislev, M. E. (2007). Domestication of emmer wheat and evolution of free-threshing tetraploid wheat. Israel Journal of Plant Sciences, 55, 207–221.

    Article  Google Scholar 

  • Fetch, T. B., Steffenson, B. J., & Nevo, E. (2003). Diversity and sources of multiple disease resistance in Hordeum spontaneum. Plant Disease, 87, 1439–1448.

    Article  Google Scholar 

  • Fitzgerald, T. L., Shapter, F. M., McDonald, S., Waters, D. L. F., Chivers, I. H., Drenth, A., Nevo, E., & Henry, R. J. (2011). Genome diversity in wild grasses under environmental stress. Proceedings of the National Academy of Sciences of the United States of America, 108, 21140–21145.

    Article  PubMed  CAS  Google Scholar 

  • Forster, B. P., Russell, J. R., Ellis, R. P., Handley, L. L., Robinson, D., Hackett, C. A., Nevo, E., Waugh, R., Gordon, D. C., Keith, R., & Powell, W. (1997). Locating genotypes and genes for abiotic stress in barley, a strategy using maps, markers, and the wild species. The New Phytologist, 137, 141–147.

    Article  Google Scholar 

  • Gaut, B. S. (2002). Evolutionary dynamics of grass genomes. The New Phytologist, 154, 15–28.

    Article  CAS  Google Scholar 

  • Gupta, P. K., Sharma, P. K., Balyan, H. S., Roy, J. K., Sharma, S., Beharav, A., & Nevo, E. (2002). Polymorphism at rDNA loci in barley and its relation with climatic variables. Theoretical and Applied Genetics, 104, 473–481.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, P. K., Sharma, S., Kumar, S., Balyan, H. S., Beharav, A., & Nevo, E. (2004). Adaptive ribosomal DNA polymorphism in wild barley at a mosaic microsite, Newe Ya’ar, in Israel. Plant Science, 166, 1555–1563.

    Article  CAS  Google Scholar 

  • Gustafson, P., Raskina, O., Ma, X., & Nevo, E. (2009). Wheat evolution, domestication, and improvement. In B. F. Carver (Ed.), Wheat: Science and trade (pp. 5–30). Ames: Wiley-Blackwell.

    Google Scholar 

  • Handley, L. L., Robinson, D., Forster, B. P., Ellis, R. P., Scrimgeour, C. M., Gordon, D. C., Nevo, E., & Raven, J. A. (1997a). Shoot d15N correlates with genotype and salt stress in barley. Planta, 201, 100–102.

    Article  CAS  Google Scholar 

  • Harlan, J. R. (1976). Barley. In N. W. Simmonds (Ed.), Evolution of crop plants (pp. 93–98). London: Longman.

    Google Scholar 

  • Harlan, J. R. (1992). Crop and man (2nd ed.). Madison: American Society for Agronomy.

    Google Scholar 

  • Harlan, J. R., & Zohary, D. (1966). Distribution of wild wheats and barley. Science, 153, 1074–1080.

    Article  PubMed  CAS  Google Scholar 

  • Huang, Q., Beharav, A., Li, Y. C., Kirzhner, V., & Nevo, E. (2002). Mosaic microecological differential stress causes adaptive microsatellite divergence in wild barley, Hordeum spontaneum, at Neve Yaar, Israel. Genome, 45, 1216–1229.

    Article  PubMed  CAS  Google Scholar 

  • Hubner, S., Hoffken, M., Oren, E., Haseneyer, G., Stein, N., Graner, A., Schmid, K., & Fridman, E. (2009). Strong correlation of wild barley (Hordeum spontaneum) population structure with temperature and precipitation variation. Molecular Ecology, 18, 1523–1536.

    Article  PubMed  CAS  Google Scholar 

  • IPCC, Israel’s Second National Communication on Climatic Change. (2010). Submitted under the United Nations Framework Convention on Climate Change. Ministry of Environmental Protection, State of Israel, Jerusalem. Available at www.environment.gov.il. Accessed 2 Feb 2012.

  • Ivandic, V., Hackett, C. A., Zhang, Z., Staub, J. E., Nevo, E., Thomas, T. B., & Forster, B. P. (2000). Phenotypic responses of wild barley to experimentally imposed water stress. Journal of Experimental Botany, 51, 2021–2029.

    Article  PubMed  CAS  Google Scholar 

  • Ivandic, V., Hackett, C. A., Nevo, E., Keith, R., Thomas, W. T. B., & Forster, B. P. (2002). Analysis of simple sequence repeats (SSRs) in wild barley from the Fertile Crescent: associations with ecology, geography and flowering time. Plant Molecular Biology, 48, 511–527.

    Article  PubMed  CAS  Google Scholar 

  • Ivandic, V., Thomas, W. T. B., Nevo, E., Zhang, Z., & Forster, B. P. (2003). Associations of simple sequence repeats with quantitative trait variation including biotic and abiotic stress tolerance in Hordeum spontaneum. Plant Breeding, 122, 300–304.

    Article  CAS  Google Scholar 

  • Kalendar, R., Tanskanen, J., Immonen, S., Nevo, E., & Schulman, A. H. (2000). Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proceedings of the National Academy of Sciences of the United States of America, 97, 6603–6607.

    Article  PubMed  CAS  Google Scholar 

  • Kislev, M. E. (1997). Early agriculture and palaeoecology of Netiv Hagdud. In O. Bar-Yosef & A. Gopher (Eds.), An early Neolithic village in the Jordan Valley. Part 1: The archaeology of Netiv Hagdud. Cambridge: Peabody Museum of Archaeology and Ethnology, Harvard University.

    Google Scholar 

  • Kislev, M. E., Nadel, D., & Carmi, I. (1992). Epi-palaeolithic (19,000 BP) cereal and fruit diet at Ohalo II, Sea of Galilee, Israel. Review of Palaeobotany and Palynology, 73, 161–166.

    Article  Google Scholar 

  • Krugman, T., Chague, V., Peleg, Z., Balzergue, S., Just, J., Korol, A. B., Nevo, E., Saranga, Y., Chalhoub, B., & Fahima, T. (2010). Multilevel regulation and signaling processes associated with adaptation to terminal drought in wild emmer wheat. Functional & Integrative Genomics, 10, 167–186.

    Article  CAS  Google Scholar 

  • Krugman, T., Peleg, Z., Quansah, L., Chagué, V., Korol, A. B., Nevo, E., Saranga, Y., Fait, A., Chalhoub, B., & Fahima, T. (2011). Alteration in expression of hormone-related genes in wild emmer wheat roots associated with drought adaptation mechanisms. Functional & Integrative Genomics, 11, 565–583.

    Article  CAS  Google Scholar 

  • Lev, B., Kislev, M. E., & Bar-Yosef, O. (2005). Mousterian vegetal food in Kebara Cave, Mt. Carmel. Journal of Archaeological Science, 32, 475–484.

    Article  Google Scholar 

  • Lev-Yadun, S., Gopher, A., & Abbo, S. (2000). The cradle of Agriculture. Science, 288, 1602–1603.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y. C., Krugman, T., Fahima, T., Beiles, A., & Nevo, E. (1998). Genetic diversity of alcohol dehydrogenase 3 in wild barley population at the “Evolution Canyon” microsite, Nahal Oren, Mt. Carmel, Israel. Barley Genetics Newsletter, 28, 58–60.

    Google Scholar 

  • Li, Y. C., Fahima, T., Krugman, T., Beiles, A., Röder, M. S., Korol, A. B., & Nevo, E. (2000). Parallel microgeographic patterns of genetic diversity and divergence revealed by allozyme, RAPD, and microsatellites in Triticum dicoccoides at Ammiad, Israel. Conservation Genetics, 1, 191–207.

    Article  CAS  Google Scholar 

  • Li, Y. C., Korol, A. B., Fahima, T., Beiles, A., & Nevo, E. (2002). Microsatellites: Genomic distribution, putative functions and mutational mechanisms: A review. Molecular Ecology, 11, 2453–2465.

    Article  PubMed  CAS  Google Scholar 

  • Li, J. Z., Sjakste, T. G., Röder, M. S., & Ganal, M. W. (2003). Development and genetic mapping of 127 new microsatellite markers in barley. Theoretical and Applied Genetics, 107, 1021–1027.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y. C., Korol, A. B., Fahima, T., & Nevo, E. (2004). Microsatellites within genes: Structure, function and evolution. Molecular Biology and Evolution, 21, 991–1007.

    Article  PubMed  CAS  Google Scholar 

  • Ma, D. Q. (2000). Genetic resources of Tibetan barley in China. Beijing: China Agriculture Press.

    Google Scholar 

  • Malysheva-Otto, L. V., Ganal, M. W., & Röder, M. S. (2006). Analysis of molecular diversity, population structure and linkage disequilibrium in a worldwide survey of cultivated barley germplasm (Hordeum vulgare L.). BMC Genetics, 7, 6.

    Article  PubMed  CAS  Google Scholar 

  • Molina-Cano, J., Russell, J. R., Moralejo, M. A., Pscacena, J. I., Arias, G., & Powell, W. (2005). Chloroplast DNA microsatellite analysis supports a polyphyletic origin for barley. Theoretical and Applied Genetics, 110, 613–619.

    Article  PubMed  CAS  Google Scholar 

  • Morrell, P. L., & Clegg, M. (2007). Genetic evidence for a second domestication of barley (Hordeum vulgare) east of the Fertile-Crescent. Proceedings of the National Academy of Sciences of the United States of America, 104, 3289–3294.

    Article  PubMed  CAS  Google Scholar 

  • Morrell, P. L., Toleno, D. M., Lundy, K. E., & Clegg, M. T. (2005). Low levels of linkage disequilibrium in wild barley (Hordeum vulgare ssp. spontaneum) despite high rates of self-fertilization. Proceedings of the National Academy of Sciences of the United States of America, 102, 2442–2447.

    Article  PubMed  CAS  Google Scholar 

  • Moseman, J. G., Nevo, E., & Zohary, D. (1983). Resistance of Hordeum spontaneum collected in Israel to infection with Erysiphe graminis hordei. Crop Science, 23, 1115–1119.

    Article  Google Scholar 

  • Nevo, E. (1978). Genetic variation in natural populations: patterns and theory. Theoretical Population Biology, 13, 121–177.

    Article  PubMed  CAS  Google Scholar 

  • Nevo, E. (1987). Plant genetic resources: Prediction by isozyme markers and ecology. In M. C. Rattazi, J. G. Scandalios, & G. S. Whitt (Eds.), Isozymes: Current topics in biological research (Agriculture, physiology and medicine, Vol. 16, pp. 247–267). New York: Alan R. Liss.

    Google Scholar 

  • Nevo, E. (1988). Genetic diversity in nature: Patterns and theory. Evolutionary Biology, 23, 217–247.

    Article  Google Scholar 

  • Nevo, E. (1992). Origin, evolution, population genetics and resources for breeding of wild barley, Hordeum spontaneum, in the Fertile Crescent. In P. Shewry (Ed.), Barley: Genetics, molecular biology and biotechnology (pp. 19–43). Wallingford: C.A.B International.

    Google Scholar 

  • Nevo, E. (1995). Asian, African and European biota meet at “Evolution Canyon”, Israel: Local tests of global biodiversity and genetic diversity patterns. Proceedings of the Royal Society of London, Series B, 262, 149–155.

    Article  Google Scholar 

  • Nevo, E. (1998a). Molecular evolution and ecological stress at global, regional and local scales: The Israeli perspective. The Journal of Experimental Zoology, 282, 95–119.

    Article  CAS  Google Scholar 

  • Nevo, E. (1998b). Genetic diversity in wild cereals: Regional and local studies and their bearing on conservation ex situ and in situ. Genetic Resources and Crop Evolution, 45, 355–370.

    Article  Google Scholar 

  • Nevo, E. (2004). Population genetic structure of wild barley and wheat in the Near East Fertile Crescent: Regional and local adaptive. In P. K. Gupta & R. K. Varshney (Eds.), Cereal genomics (pp. 135–163). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Nevo, E. (2005). Genomic diversity in nature and domestication. In R. J. Henry (Ed.), Genotypic and phenotypic variation in higher plants (pp. 287–316). Wallingford: CAB International.

    Chapter  Google Scholar 

  • Nevo, E. (2006a). “Evolution Canyon”: A microcosm of life’s evolution focusing on adaptation and speciation. Israel Journal of Ecology & Evolution, 52(3–4), 485–506.

    Google Scholar 

  • Nevo, E. (2006b). Genome evolution of wild cereal diversity and prospects for crop improvement. Plant Genetic Resources, 4, 36–46.

    Article  CAS  Google Scholar 

  • Nevo, E. (2007). Evolution of wild wheat and barley and crop improvement: Studies at the Institute of Evolution. Israel Journal of Plant Sciences, 55, 251–262.

    Article  Google Scholar 

  • Nevo, E. (2009a). Evolution in action across life at “Evolution Canyon”, Israel. Trends in Evolutionary Biology, 1, e3.

    Article  Google Scholar 

  • Nevo, E. (2009b). Ecological genomics of natural plant populations: The Israeli perspective. In D. J. Somers, P. Langridge, & J. P. Gustafson (Eds.), Methods in molecular biology (Plant genomics, Vol. 513, pp. 321–344). New York: Human Press.

    Google Scholar 

  • Nevo, E. (2011a). Triticum. In C. Kole (Ed.), Wild crop relatives: Genomic and breeding resources, cereals (pp. 407–456). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Nevo, E. (2011b). Evolution under environmental stress at macro-and microscales. Genome Biology and Evolution, 2, 1039–1052.

    Article  CAS  Google Scholar 

  • Nevo, E. (2011c). Selection overrules gene flow at “Evolution Canyons, Israel”. In K. V. Urbano (Ed.), Advance in genetics research (Vol. 5, Chap. 2, pp. 67–89). New York: Nova Science Publishers Inc.

    Google Scholar 

  • Nevo, E. (2012). “Evolution Canyon” a potential microscale of global warming across life. Proceedings of the National Academy of Sciences of the United States of America, 109, 2960–2965.

    Article  PubMed  CAS  Google Scholar 

  • Nevo, E., & Beiles, A. (2011). Genetic variation in nature. Scholarpedia, 6, 8821.

    Article  Google Scholar 

  • Nevo, E., & Chen, G. (2010). Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant, Cell & Environment, 33, 670–685.

    Article  CAS  Google Scholar 

  • Nevo, E., Zohary, D., Brown, A. H. D., & Haber, M. (1979). Genetic diversity and environmental associations of wild barley, Hordeum spontaneum, in Israel. Evolution, 33, 815–833.

    Article  CAS  Google Scholar 

  • Nevo, E., Brown, A. H. D., Zohary, D., Storch, N., & Beiles, A. (1981). Microgeographic edaphic differentiation in allozyme polymorphisms of wild barley (Hordeum spontaneum, Poaceae). Plant Systematics and Evolution, 138, 287–292.

    Article  Google Scholar 

  • Nevo, E., Beiles, A., Storch, N., Doll, H., & Andersen, B. (1983). Microgeographic edaphic differentiation in hordein polymorphisms of wild barley. Theoretical and Applied Genetics, 64, 123–132.

    Article  Google Scholar 

  • Nevo, E., Beiles, A., Gutterman, Y., Storch, N., & Kaplan, D. (1984). Genetic resources of wild cereals in Israel and vicinity: II. Phenotypic variation within and between populations of wild barley, Hordeum spontaneum. Euphytica, 33, 737–756.

    Article  Google Scholar 

  • Nevo, E., Beiles, A., Kaplan, D., Golenberg, E. M., Olsvig-Whittaker, L., & Naveh, Z. (1986a). Natural selection of allozyme polymorphisms: A microsite test revealing ecological genetic differentiation in wild barley. Evolution, 40, 13–20.

    Article  Google Scholar 

  • Nevo, E., Beiles, A., Kaplan, D., Storch, N., & Zohary, D. (1986b). Genetic diversity and environmental associations of wild barley, Hordeum spontaneum (Poaceae), in Iran. Plant Systematics and Evolution, 153, 141–164.

    Article  Google Scholar 

  • Nevo, E., Beiles, A., & Zohary, D. (1986c). Genetic resources of wild barley in the Near East: Structure, evolution and application in breeding. Biological Journal of the Linnean Society, 27, 355–380.

    Article  Google Scholar 

  • Nevo, E., Zohary, D., Beiles, A., Kaplan, D., & Storch, N. (1986d). Genetic diversity and environmental associations of wild barley, Hordeum spontaneum, in Turkey. Genetica, 68, 203–213.

    Article  Google Scholar 

  • Nevo, E., Ordentlich, A., Beiles, A., & Raskin, I. (1992). Genetic divergence of heat production within and between the wild progenitors of wheat and barley: Evolutionary and agronomical implications. Theoretical and Applied Genetics, 84, 958–962.

    Google Scholar 

  • Nevo, E., Apelbaum-Elkaher, I., Garty, J., & Beiles, A. (1997). Natural selection causes microscale allozyme diversity in wild barley and a lichen at “Evolution Canyon” Mt. Carmel, Israel. Heredity, 78, 373–382.

    Article  Google Scholar 

  • Nevo, E., Fu, Y. B., Pavlicek, T., Khalifa, S., Tavasi, M., & Beiles, A. (2012). Evolution of wild cereals during 28 years of global warming in Israel. Proceedings of the National Academy of Sciences of the United States of America, 109, 3412–3415.

    Article  PubMed  CAS  Google Scholar 

  • Owuor, E. D., Fahima, T., Beiles, A., Korol, A. B., & Nevo, E. (1997). Population genetics response to microsite ecological stress in wild barley Hordeum spontaneum. Molecular Ecology, 6, 1177–1187.

    Article  Google Scholar 

  • Owuor, E. D., Beharav, A., Fahima, T., Kirzhner, V. M., Korol, A. B., & Nevo, E. (2003). Microscale ecological stress causes RAPD molecular selection in wild barley, Neve Yaar microsite, Israel. Genetic Resources and Crop Evolution, 50, 213–224.

    Article  CAS  Google Scholar 

  • Pakniyat, H., Powell, W., Baird, E., Handley, L. L., Robinson, D., Sorimgeour, C. M., Nevo, E., Hackett, C. A., Caligari, P. D. S., & Forster, B. P. (1997). AFLP variation in wild barley (Hordeum spontaneum C. Koch) with reference to salt tolerance and associated ecogeography. Genome, 40, 332–341.

    Article  PubMed  CAS  Google Scholar 

  • Parnas, T. (2006, November). Evidence for incipient sympatric speciation in wild barley, Hordeum spontaneum, at “Evolution Canyon”, Mount Carmel, Israel, based on hybridization and physiological and genetic diversity estimates. Thesis submitted in partial fulfillment of the requirements for master’s degree, Institute of Evolution, University of Haifa, Israel.

    Google Scholar 

  • Peng, J. H., Ronin, Y. I., Fahima, T., Roder, M. S., Li, Y. C., Nevo, E., & Korol, A. B. (2003). Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proceedings of the National Academy of Sciences of the United States of America, 100, 2489–2494.

    Article  PubMed  CAS  Google Scholar 

  • Prasad, V., Stromberg, C. A. E., Alimohammadian, H., & Sahni, A. (2005). Dinosaur coprolites and the early evolution of grasses and grazers. Science, 310, 117–1180.

    Article  CAS  Google Scholar 

  • Schmalenbach, I., March, T. J., Bringezu, T., Waugh, R., & Pillen, K. (2011). High-resolution genotyping of wild barley introgression lines and fine-mapping of the threshability locus thresh-1 using the illumina Golden Gate assay. Genomes, 1, 187.

    CAS  Google Scholar 

  • Sharma, S., Beharav, A., Balyan, H. S., Nevo, E., & Gupta, P. K. (2004). Ribosomal DNA polymorphism and its association with geographical and climatic variables in 27 wild barley populations from Jordan. Plant Science, 166, 467–477.

    Article  CAS  Google Scholar 

  • Shen, Y., Lebold, K., Lansky, E. P., Traber, M., & Nevo, E. (2011). “Tocol-Omic” diversity in wild barley. Chemistry & Biodiversity, 8, 2322–2330.

    Article  CAS  Google Scholar 

  • Suprunova, T., Krugman, T., Fahima, T., Chen, G., Shams, I., Korol, A. B., & Nevo, E. (2004). Differential expression of dehydrin (Dhn) in response to water stress in resistant and sensitive wild barley (Hordeum spontaneum). Plant, Cell & Environment, 27, 1297–1308.

    Article  CAS  Google Scholar 

  • Suprunova, T., Krugman, T., Distelfeld, A., Fahima, T., Nevo, E., & Korol, A. B. (2007). Identification of a novel gene (Hsdr4) involved in water-stress tolerance in wild barley. Plant Molecular Biology, 64, 17–34.

    Article  PubMed  CAS  Google Scholar 

  • Turpeinen, T., Kulmala, J., & Nevo, E. (1999). Genome size variation in Hordeum spontaneum populations. Genome, 42, 1094–1099.

    PubMed  CAS  Google Scholar 

  • Turpeinen, T., Vanhala, V., Nevo, E., & Nissila, E. (2003). AFLP genetic polymorphism in wild barley (Hordeum spontaneum) populations in Israel. Theoretical and Applied Genetics, 106, 1333–1339.

    PubMed  CAS  Google Scholar 

  • van Rijn, C. P. E., Heersch, I., Van Berkel, Y. E. M., Nevo, E., Lambers, H., & Poorter, H. (2000). Growth characteristics in Hordeum spontaneum populations from different habitats. The New Phytologist, 146, 471–481.

    Article  Google Scholar 

  • van Rijn, C. P. E., Vanhal, T. K., Nevo, E., Stam, P., van Eeuwijk, F. A., & Poorter, H. (2001). Association of AFLP markers with growth-related traits in Hordeum spontaneum. In C. van Rijn, Ph.D. Thesis: a physiological and genetic analysis of growth characteristics in Hordeum spontaneum. Universiteit Utrecht, Faculteit Biologie, Utrecht, pp. 75–93.

    Google Scholar 

  • Vanhala, T., van Rijn, C. P. E., Buntjer, J., Stam, P., Nevo, E., Poorter, H., & van Eeuwijk, F. A. (2004). Environmental, phenotypic and genetic variation of wild barley (Hordeum spontaneum) from Israel. Euphytica, 137, 297–309.

    Article  CAS  Google Scholar 

  • Varshney, R. K., Raif, S., Borner, A., Korzun, V., Stein, N., Sorrelis, M. E., Langridge, P., & Graner, A. (2005). Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye, and rice. Plant Science, 168, 195–202.

    Article  CAS  Google Scholar 

  • Varshney, R. K., Chabane, K., Hendre, P. S., Aggarwal, R. K., & Graner, A. (2007). Comparative assessment of EST-SSR EST-SNP, and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant Science, 173, 638–649.

    Article  CAS  Google Scholar 

  • Verhoeven, K. J. E., Biere, A., Nevo, E., & van Damme, J. M. M. (2004a). Differential selection of growth rate-related traits in wild barley, Hordeum spontaneum, in contrasting greenhouse nutrient environments. Journal of Evolutionary Biology, 17, 184–196.

    Article  PubMed  CAS  Google Scholar 

  • Verhoeven, K. J. E., Biere, A., Nevo, E., & van Damme, J. M. M. (2004b). Can a genetic correlation with seed mass constrain adaptive evolution of seedling desiccation tolerance in wild barley? International Journal of Plant Sciences, 165, 281–288.

    Article  CAS  Google Scholar 

  • Vicient, C. M., Suoniemi, A., Anamthawat-Jonsson, K., Tanskanen, J., Beharav, A., Nevo, E., & Schulman, A. H. (1999). Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. The Plant Cell, 11, 1769–1784.

    PubMed  CAS  Google Scholar 

  • Volis, S., Yakubov, B., Shulgina, E., Ward, D., Zur, V., & Mendlinger, S. (2001). Test for adaptive RAPD variation in population genetic structure if wild barley, Hordeum spontaneum Koch. Biological Journal of the Linnean Society, 74, 289–303.

    Google Scholar 

  • Volis, S., Mendlinger, S., & Ward, D. (2002). Differentiation in populations of Hordeum spontaneum along a gradient of environmental productivity and predictability: Life history and local adaptation. Biological Journal of the Linnean Society, 77, 479–490.

    Article  Google Scholar 

  • Wei, Y. M., Baum, B. R., Nevo, E., & Zheng, Y. L. (2005). Does domestication mimic speciation? 1. A population-genetic analysis of Hordeum spontaneum and Hordeum vulgare based on AFLP and evolutionary considerations. Canadian Journal of Botany, 83, 1496–1512 (Published on the NRC Research Press Web site on 1 February 2006).

    Article  CAS  Google Scholar 

  • Weiss, B., Wetterstrom, W., Nadel, D., & Bar-Yosef, O. (2004). The broad spectrum revisited: Evidence from plant remains. Proceedings of the National Academy of Sciences of the United States of America, 101, 9551–9555.

    Article  PubMed  CAS  Google Scholar 

  • Yan, J., Yan, J., Chen, G., Cheng, J., Nevo, E., & Gutterman, Y. (2008). Phenotypic variation in caryopsis dormancy and seedling salt tolerance in wild barley, Hordeum spontaneum, from different habitats in Israel. Genetic Resources and Crop Evolution, 55, 995–1005.

    Article  Google Scholar 

  • Yan, J., Wang, F., Qin, H., Chen, G., Nevo, E., Fahima, T., & Cheng, J. (2011). Natural variation in grain selenium concentration of wild barley, Hordeum spontaneum, populations from Israel. Biological Trace Element Research, 142, 773–786.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Z., Zhang, T., Ki, G., & Nevo, E. (2012). Adaptive microclimatic evolution of the dehydrin 6 gene in wild barley at “Evolution Canyon”, Israel. Genetica (Online version). doi:10.1007/s10709-012-29641-1.

  • Zhang, F., Gutterman, Y., Krugman, T., Fahima, T., & Nevo, E. (2002). Differences in primary dormancy and seedling revival ability for some Hordeum spontaneum genotypes of Israel. Israel Journal of Plant Sciences, 50, 271–276.

    Article  Google Scholar 

  • Zhang, F., Chen, G., Huang, Q., Orion, O., Krugman, T., Fahima, T., Korol, A. B., Nevo, E., & Gutterman, Y. (2005). Genetic basis of barley caryopsis dormancy and seedling desiccation tolerance at the germination stage. Theoretical and Applied Genetics, 110, 445–453.

    Article  PubMed  CAS  Google Scholar 

  • Zohary, D. (1969). The progenitors of wheat and barley in relation to domestication and agriculture dispersal in the Old World. In P. J. Ucko & G. W. Dimbleby (Eds.), The domestication and exploitation of plants and animals (pp. 47–66). London: Duckworth.

    Google Scholar 

  • Zohary, D. (1999). Monophyletic vs. polyphyletic origin of the crops on which agriculture was founded in the Near East. Genetic Resources and Crop Evolution, 46, 133–142.

    Article  Google Scholar 

  • Zohary, D., Hopf, M., & Weiss, E. (2012). Domestication of plants in the Old World: The origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean Basin (4th ed.). Oxford: Oxford University Press.

    Google Scholar 

Download references

Acknowledgments

I thank all of my colleagues and students from the Institute of Evolution, the International Graduate Center of Evolution, University of Haifa, and worldwide for their excellent collaboration in our research project of the evolution of wild cereals in the Near East Fertile Crescent that started in the early 1970s. I am deeply grateful to Robin Permut for the editing and to the Ancell-Teicher Research Foundation for Genetics and Molecular Evolution, which provides continuous support of my research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eviatar Nevo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Zhejiang University Press and Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Nevo, E. (2013). Evolution of Wild Barley and Barley Improvement. In: Zhang, G., Li, C., Liu, X. (eds) Advance in Barley Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4682-4_1

Download citation

Publish with us

Policies and ethics