Skip to main content

Viral Infections and Sphingolipids

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 216))

Abstract

Besides their essential role in the immune system, sphingolipids and their metabolites are potential key regulators in the life cycle of obligatory intracellular pathogens such as viruses. They are involved in lateral and vertical segregation of receptors required for attachment, membrane fusion and endocytosis, as well as in the intracellular replication, assembly and release of viruses. Glycosphingolipids may themselves act as receptors for viruses, such as Galactosylceramide for human immunodeficiency virus (HIV). In addition, sphingolipids and their metabolites are inseparably interwoven in signal transduction processes, dynamic alterations of the cytoskeleton, and the regulation of innate and intrinsic responses of infected target cells. Depending on the nature of the intracellular pathogen, they may support or inhibit infections. Understanding of the underlying mechanisms depending on the specific virus, immune control, and type of disease may open new avenues for therapeutic interventions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ASMase:

Acidic sphingomyelinase

bSMase:

Bacterial sphingomyelinase

BVDV:

Bovine viral diarrhea virus

CRAC:

Ca2+ release-activated Ca2+

DC:

Dendritic cell

DC-SIGN:

DC-specific intercellular adhesion molecule-3-grabbing non-integrin

DRM:

Detergent-resistant membrane domain

Gal-Cer:

Galactosylceramide

Gb3:

Gal1α1-4Gal1β1-4 glucosyl ceramide or globotriaosylceramide, also referred to as pk blood group antigen or CD77

Gb4Cer:

Globotetraosylceramide

GSL:

Glycosphingolipid

HCV:

Hepatitis C virus

HCMV:

Human cytomegalovirus

HIV:

Human immunodeficiency virus

JEV:

Japanese encephalitis virus

LCMV:

Lmphocytic choriomeningitis virus

MV:

Measles virus

NEM:

N-ethylmaleimide

NSMase:

Neutral sphingomyelinase

PPMP:

1-Phenyl-2-hexadecanoylamino-3-morpholino-1-propanol

PBMC:

Peripheral blood mononuclear cell

RV:

Rhinovirus

RSV:

Respiratory syncytial virus

S1P:

Sphingosine 1-phosphate

SINV:

Sindbis virus

SMase:

Sphingomyelinase

References

  • Alfsen A, Bomsel M (2002) HIV-1 gp41 envelope residues 650-685 exposed on native virus act as a lectin to bind epithelial cell galactosyl ceramide. J Biol Chem 277:25649–25659

    Article  PubMed  CAS  Google Scholar 

  • Alvisi G, Madan V, Bartenschlager R (2011) Hepatitis C virus and host cell lipids: an intimate connection. RNA Biol 8:258–269

    Article  PubMed  CAS  Google Scholar 

  • Amako Y, Syed GH, Siddiqui A (2011) Protein kinase D negatively regulates hepatitis C virus secretion through phosphorylation of oxysterol-binding protein and ceramide transfer protein. J Biol Chem 286:11265–11274

    Article  PubMed  CAS  Google Scholar 

  • Avota E, Avots A, Niewiesk S, Kane LP, Bommhardt U, ter Meulen V, Schneider-Schaulies S (2001) Disruption of Akt kinase activation is important for immunosuppression induced by measles virus. Nat Med 7:725–731

    Article  PubMed  CAS  Google Scholar 

  • Avota E, Gulbins E, Schneider-Schaulies S (2011) DC-SIGN mediated sphingomyelinase-activation and ceramide generation is essential for enhancement of viral uptake in dendritic cells. PLoS Pathog 7:e1001290

    Article  PubMed  CAS  Google Scholar 

  • Blanchet F, Moris A, Mitchell JP, Piguet V (2011) A look at HIV journey: from dendritic cells to infection spread in CD4+ T cells. Curr Opin HIV AIDS 6:391–397

    Article  PubMed  Google Scholar 

  • Bollinger CR, Teichgraber V, Gulbins E (2005) Ceramide-enriched membrane domains. Biochim Biophys Acta 1746:284–294

    Article  PubMed  CAS  Google Scholar 

  • Bonsch C, Zuercher C, Lieby P, Kempf C, Ros C (2010) The globoside receptor triggers structural changes in the B19 virus capsid that facilitate virus internalization. J Virol 84:11737–11746

    Article  PubMed  CAS  Google Scholar 

  • Brugger B, Glass B, Haberkant P, Leibrecht I, Wieland FT, Krausslich HG (2006) The HIV lipidome: a raft with an unusual composition. Proc Natl Acad Sci USA 103:2641–2646

    Article  PubMed  Google Scholar 

  • Burckhardt CJ, Greber UF (2009) Virus movements on the plasma membrane support infection and transmission between cells. PLoS Pathog 5:e1000621

    Article  PubMed  Google Scholar 

  • Caffrey M (2011) HIV envelope: challenges and opportunities for development of entry inhibitors. Trends Microbiol 19:191–197

    Article  PubMed  CAS  Google Scholar 

  • Carette JE, Raaben M, Wong AC, Herbert AS, Obernosterer G, Mulherkar N, Kuehne AI, Kranzusch PJ, Griffin AM, Ruthel G, Dal Cin P, Dye JM, Whelan SP, Chandran K, Brummelkamp TR (2011) Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature 477:340–343

    Article  PubMed  CAS  Google Scholar 

  • Church LD, Hessler G, Goodall JE, Rider DA, Workman CJ, Vignali DA, Bacon PA, Gulbins E, Young SP (2005) TNFR1-induced sphingomyelinase activation modulates TCR signaling by impairing store-operated Ca2+ influx. J Leukoc Biol 78:266–278

    Article  PubMed  CAS  Google Scholar 

  • Cook DG, Fantini J, Spitalnik SL, Gonzalez-Scarano F (1994) Binding of human immunodeficiency virus type I (HIV-1) gp120 to galactosylceramide (GalCer): relationship to the V3 loop. Virology 201:206–214

    Article  PubMed  CAS  Google Scholar 

  • Cosset FL, Lavillette D (2011) Cell entry of enveloped viruses. Adv Genet 73:121–183

    Article  PubMed  CAS  Google Scholar 

  • Cote M, Misasi J, Ren T, Bruchez A, Lee K, Filone CM, Hensley L, Li Q, Ory D, Chandran K, Cunningham J (2011) Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection. Nature 477:344–348

    Article  PubMed  CAS  Google Scholar 

  • Dorosko SM, Connor RI (2010) Primary human mammary epithelial cells endocytose HIV-1 and facilitate viral infection of CD4+ T lymphocytes. J Virol 84:10533–10542

    Article  PubMed  CAS  Google Scholar 

  • Dreschers S, Franz P, Dumitru C, Wilker B, Jahnke K, Gulbins E (2007) Infections with human rhinovirus induce the formation of distinct functional membrane domains. Cell Physiol Biochem 20:241–254

    PubMed  CAS  Google Scholar 

  • Dumitru CA, Dreschers S, Gulbins E (2006) Rhinoviral infections activate p38MAP-kinases via membrane rafts and RhoA. Cell Physiol Biochem 17:159–166

    Article  PubMed  CAS  Google Scholar 

  • Ewers H, Smith AE, Sbalzarini IF, Lilie H, Koumoutsakos P, Helenius A (2005) Single-particle tracking of murine polyoma virus-like particles on live cells and artificial membranes. Proc Natl Acad Sci USA 102:15110–15115

    Article  PubMed  CAS  Google Scholar 

  • Finnegan CM, Blumenthal R (2006) Fenretinide inhibits HIV infection by promoting viral endocytosis. Antiviral Res 69:116–123

    Article  PubMed  CAS  Google Scholar 

  • Finnegan CM, Rawat SS, Puri A, Wang JM, Ruscetti FW, Blumenthal R (2004) Ceramide, a target for antiretroviral therapy. Proc Natl Acad Sci USA 101:15452–15457

    Article  PubMed  CAS  Google Scholar 

  • Finnegan CM, Rawat SS, Cho EH, Guiffre DL, Lockett S, Merrill AH Jr, Blumenthal R (2007) Sphingomyelinase restricts the lateral diffusion of CD4 and inhibits human immunodeficiency virus fusion. J Virol 81:5294–5304

    Article  PubMed  CAS  Google Scholar 

  • Fischl W, Bartenschlager R (2011) Exploitation of cellular pathways by Dengue virus. Curr Opin Microbiol 14(4):470–475

    Article  PubMed  CAS  Google Scholar 

  • Flach TL, Ng G, Hari A, Desrosiers MD, Zhang P, Ward SM, Seamone ME, Vilaysane A, Mucsi AD, Fong Y, Prenner E, Ling CC, Tschopp J, Muruve DA, Amrein MW, Shi Y (2011) Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity. Nat Med 17:479–487

    Article  PubMed  CAS  Google Scholar 

  • Gassert E, Avota E, Harms H, Krohne G, Gulbins E, Schneider-Schaulies S (2009) Induction of membrane ceramides: a novel strategy to interfere with T lymphocyte cytoskeletal reorganisation in viral immunosuppression. PLoS Pathog 5:e1000623

    Article  PubMed  Google Scholar 

  • Geijtenbeek TB, Gringhuis SI (2009) Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol 9:465–479

    Article  PubMed  CAS  Google Scholar 

  • Geijtenbeek TB, van Kooyk Y (2003) DC-SIGN: a novel HIV receptor on DCs that mediates HIV-1 transmission. Curr Top Microbiol Immunol 276:31–54

    Article  PubMed  CAS  Google Scholar 

  • Goni FM, Alonso A (2002) Sphingomyelinases: enzymology and membrane activity. FEBS Lett 531:38–46

    Article  PubMed  CAS  Google Scholar 

  • Grassme H, Bock J, Kun J, Gulbins E (2002a) Clustering of CD40 ligand is required to form a functional contact with CD40. J Biol Chem 277:30289–30299

    Article  PubMed  CAS  Google Scholar 

  • Grassme H, Jendrossek V, Bock J, Riehle A, Gulbins E (2002b) Ceramide-rich membrane rafts mediate CD40 clustering. J Immunol 168:298–307

    PubMed  CAS  Google Scholar 

  • Grassme H, Riehle A, Wilker B, Gulbins E (2005) Rhinoviruses infect human epithelial cells via ceramide-enriched membrane platforms. J Biol Chem 280:26256–26262

    Article  PubMed  CAS  Google Scholar 

  • Grassme H, Riethmuller J, Gulbins E (2007) Biological aspects of ceramide-enriched membrane domains. Prog Lipid Res 46:161–170

    Article  PubMed  CAS  Google Scholar 

  • Gringhuis SI, den Dunnen J, Litjens M, van der Vlist M, Geijtenbeek TB (2009) Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nat Immunol 10:1081–1088

    Article  PubMed  CAS  Google Scholar 

  • Gulbins E, Grassme H (2002) Ceramide and cell death receptor clustering. Biochim Biophys Acta 1585:139–145

    Article  PubMed  CAS  Google Scholar 

  • Gulbins E, Kolesnick R (2003) Raft ceramide in molecular medicine. Oncogene 22:7070–7077

    Article  PubMed  CAS  Google Scholar 

  • Gulbins E, Dreschers S, Wilker B, Grassme H (2004) Ceramide, membrane rafts and infections. J Mol Med 82:357–363

    Article  PubMed  CAS  Google Scholar 

  • Hammache D, Pieroni G, Yahi N, Delezay O, Koch N, Lafont H, Tamalet C, Fantini J (1998a) Specific interaction of HIV-1 and HIV-2 surface envelope glycoproteins with monolayers of galactosylceramide and ganglioside GM3. J Biol Chem 273:7967–7971

    Article  PubMed  CAS  Google Scholar 

  • Hammache D, Yahi N, Pieroni G, Ariasi F, Tamalet C, Fantini J (1998b) Sequential interaction of CD4 and HIV-1 gp120 with a reconstituted membrane patch of ganglioside GM3: implications for the role of glycolipids as potential HIV-1 fusion cofactors. Biochem Biophys Res Commun 246:117–122

    Article  PubMed  CAS  Google Scholar 

  • Harrison AL, Olsson ML, Jones RB, Ramkumar S, Sakac D, Binnington B, Henry S, Lingwood CA, Branch DR (2010) A synthetic globotriaosylceramide analogue inhibits HIV-1 infection in vitro by two mechanisms. Glycoconj J 27:515–524

    Article  PubMed  CAS  Google Scholar 

  • Hatch SC, Archer J, Gummuluru S (2009) Glycosphingolipid composition of human immunodeficiency virus type 1 (HIV-1) particles is a crucial determinant for dendritic cell-mediated HIV-1 trans-infection. J Virol 83:3496–3506

    Article  PubMed  CAS  Google Scholar 

  • Herz J, Pardo J, Kashkar H, Schramm M, Kuzmenkina E, Bos E, Wiegmann K, Wallich R, Peters PJ, Herzig S, Schmelzer E, Kronke M, Simon MM, Utermohlen O (2009) Acid sphingomyelinase is a key regulator of cytotoxic granule secretion by primary T lymphocytes. Nat Immunol 10:761–768

    Article  PubMed  CAS  Google Scholar 

  • Holopainen JM, Angelova MI, Kinnunen PK (2000) Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes. Biophys J 78:830–838

    Article  PubMed  CAS  Google Scholar 

  • Hug P, Lin HM, Korte T, Xiao X, Dimitrov DS, Wang JM, Puri A, Blumenthal R (2000) Glycosphingolipids promote entry of a broad range of human immunodeficiency virus type 1 isolates into cell lines expressing CD4, CXCR4, and/or CCR5. J Virol 74:6377–6385

    Article  PubMed  CAS  Google Scholar 

  • Izquierdo-Useros N, Naranjo-Gomez M, Archer J, Hatch SC, Erkizia I, Blanco J, Borras FE, Puertas MC, Connor JH, Fernandez-Figueras MT, Moore L, Clotet B, Gummuluru S, Martinez-Picado J (2009) Capture and transfer of HIV-1 particles by mature dendritic cells converges with the exosome-dissemination pathway. Blood 113:2732–2741

    Article  PubMed  CAS  Google Scholar 

  • Izquierdo-Useros N, Naranjo-Gomez M, Erkizia I, Puertas MC, Borras FE, Blanco J, Martinez-Picado J (2010) HIV and mature dendritic cells: Trojan exosomes riding the Trojan horse? PLoS Pathog 6:e1000740

    Article  PubMed  Google Scholar 

  • Jan JT, Chatterjee S, Griffin DE (2000) Sindbis virus entry into cells triggers apoptosis by activating sphingomyelinase, leading to the release of ceramide. J Virol 74:6425–6432

    Article  PubMed  CAS  Google Scholar 

  • Khan F, Proulx F, Lingwood CA (2009) Detergent-resistant globotriaosyl ceramide may define verotoxin/glomeruli-restricted hemolytic uremic syndrome pathology. Kidney Int 75:1209–1216

    Article  PubMed  Google Scholar 

  • Lehmann MJ, Sherer NM, Marks CB, Pypaert M, Mothes W (2005) Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells. J Cell Biol 170:317–325

    Article  PubMed  CAS  Google Scholar 

  • Lepple-Wienhues A, Belka C, Laun T, Jekle A, Walter B, Wieland U, Welz M, Heil L, Kun J, Busch G, Weller M, Bamberg M, Gulbins E, Lang F (1999) Stimulation of CD95 (Fas) blocks T lymphocyte calcium channels through sphingomyelinase and sphingolipids. Proc Natl Acad Sci USA 96:13795–13800

    Article  PubMed  CAS  Google Scholar 

  • Lingwood CA, Binnington B, Manis A, Branch DR (2010a) Globotriaosyl ceramide receptor function—where membrane structure and pathology intersect. FEBS Lett 584:1879–1886

    Article  PubMed  CAS  Google Scholar 

  • Lingwood CA, Manis A, Mahfoud R, Khan F, Binnington B, Mylvaganam M (2010b) New aspects of the regulation of glycosphingolipid receptor function. Chem Phys Lipids 163:27–35

    Article  PubMed  CAS  Google Scholar 

  • Lingwood D, Binnington B, Rog T, Vattulainen I, Grzybek M, Coskun U, Lingwood CA, Simons K (2011) Cholesterol modulates glycolipid conformation and receptor activity. Nat Chem Biol 7(5):260–262

    Article  PubMed  CAS  Google Scholar 

  • Lioudyno MI, Kozak JA, Penna A, Safrina O, Zhang SL, Sen D, Roos J, Stauderman KA, Cahalan MD (2008) Orai1 and STIM1 move to the immunological synapse and are up-regulated during T cell activation. Proc Natl Acad Sci USA 105:2011–2016

    Article  PubMed  CAS  Google Scholar 

  • Liu ST, Sharon-Friling R, Ivanova P, Milne SB, Myers DS, Rabinowitz JD, Brown HA, Shenk T (2011) Synaptic vesicle-like lipidome of human cytomegalovirus virions reveals a role for SNARE machinery in virion egress. Proc Natl Acad Sci USA 108:12869–12874

    Article  PubMed  CAS  Google Scholar 

  • Lund N, Branch DR, Sakac D, Lingwood CA, Siatskas C, Robinson CJ, Brady RO, Medin JA (2005) Lack of susceptibility of cells from patients with Fabry disease to productive infection with R5 human immunodeficiency virus. AIDS 19:1543–1546

    Article  PubMed  CAS  Google Scholar 

  • Lund N, Branch DR, Mylvaganam M, Chark D, Ma XZ, Sakac D, Binnington B, Fantini J, Puri A, Blumenthal R, Lingwood CA (2006) A novel soluble mimic of the glycolipid, globotriaosyl ceramide inhibits HIV infection. AIDS 20:333–343

    Article  PubMed  CAS  Google Scholar 

  • Lund N, Olsson ML, Ramkumar S, Sakac D, Yahalom V, Levene C, Hellberg A, Ma XZ, Binnington B, Jung D, Lingwood CA, Branch DR (2009) The human P(k) histo-blood group antigen provides protection against HIV-1 infection. Blood 113:4980–4991

    Article  PubMed  CAS  Google Scholar 

  • Machesky NJ, Zhang G, Raghavan B, Zimmerman P, Kelly SL, Merrill AH Jr, Waldman WJ, Van Brocklyn JR, Trgovcich J (2008) Human cytomegalovirus regulates bioactive sphingolipids. J Biol Chem 283:26148–26160

    Article  PubMed  CAS  Google Scholar 

  • Magerus-Chatinet A, Yu H, Garcia S, Ducloux E, Terris B, Bomsel M (2007) Galactosyl ceramide expressed on dendritic cells can mediate HIV-1 transfer from monocyte derived dendritic cells to autologous T cells. Virology 362:67–74

    Article  PubMed  CAS  Google Scholar 

  • Mahfoud R, Manis A, Lingwood CA (2009) Fatty acid-dependent globotriaosyl ceramide receptor function in detergent resistant model membranes. J Lipid Res 50:1744–1755

    Article  PubMed  CAS  Google Scholar 

  • Marechal V, Clavel F, Heard JM, Schwartz O (1998) Cytosolic Gag p24 as an index of productive entry of human immunodeficiency virus type 1. J Virol 72:2208–2212

    PubMed  CAS  Google Scholar 

  • Maul-Pavicic A, Chiang SC, Rensing-Ehl A, Jessen B, Fauriat C, Wood SM, Sjoqvist S, Hufnagel M, Schulze I, Bass T, Schamel WW, Fuchs S, Pircher H, McCarl CA, Mikoshiba K, Schwarz K, Feske S, Bryceson YT, Ehl S (2011) ORAI1-mediated calcium influx is required for human cytotoxic lymphocyte degranulation and target cell lysis. Proc Natl Acad Sci USA 108:3324–3329

    Article  PubMed  CAS  Google Scholar 

  • Mercer J, Helenius A (2008) Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320:531–535

    Article  PubMed  CAS  Google Scholar 

  • Mercer J, Helenius A (2009) Virus entry by macropinocytosis. Nat Cell Biol 11:510–520

    Article  PubMed  CAS  Google Scholar 

  • Merz A, Long G, Hiet MS, Brugger B, Chlanda P, Andre P, Wieland F, Krijnse-Locker J, Bartenschlager R (2011) Biochemical and morphological properties of hepatitis C virus particles and determination of their lipidome. J Biol Chem 286:3018–3032

    Article  PubMed  CAS  Google Scholar 

  • Miller EH, Obernosterer G, Raaben M, Herbert AS, Deffieu MS, Krishnan A, Ndungo E, Sandesara RG, Carette JE, Kuehne AI, Ruthel G, Pfeffer SR, Dye JM, Whelan SP, Brummelkamp TR, Chandran K (2012a) Ebola virus entry requires the host-programmed recognition of an intracellular receptor. EMBO J 31:1947–1960

    Article  PubMed  CAS  Google Scholar 

  • Miller ME, Adhikary S, Kolokoltsov AA, Davey RA (2012b) Ebola virus requires acid sphingomyelinase activity and plasma membrane sphingomyelin for infection. J Virol 86(14): 7473–7483

    Article  PubMed  CAS  Google Scholar 

  • Monick MM, Cameron K, Powers LS, Butler NS, McCoy D, Mallampalli RK, Hunninghake GW (2004) Sphingosine kinase mediates activation of extracellular signal-related kinase and Akt by respiratory syncytial virus. Am J Respir Cell Mol Biol 30:844–852

    Article  PubMed  CAS  Google Scholar 

  • Mothes W, Sherer NM, Jin J, Zhong P (2010) Virus cell-to-cell transmission. J Virol 84: 8360–8368

    Article  PubMed  CAS  Google Scholar 

  • Muller N, Avota E, Schneider-Schaulies J, Harms H, Krohne G, Schneider-Schaulies S (2006) Measles virus contact with T cells impedes cytoskeletal remodeling associated with spreading, polarization, and CD3 clustering. Traffic 7:849–858

    Article  PubMed  Google Scholar 

  • Ng CG, Griffin DE (2006) Acid sphingomyelinase deficiency increases susceptibility to fatal alphavirus encephalomyelitis. J Virol 80:10989–10999

    Article  PubMed  CAS  Google Scholar 

  • Ng CG, Coppens I, Govindarajan D, Pisciotta J, Shulaev V, Griffin DE (2008a) Effect of host cell lipid metabolism on alphavirus replication, virion morphogenesis, and infectivity. Proc Natl Acad Sci USA 105:16326–16331

    Article  PubMed  CAS  Google Scholar 

  • Ng G, Sharma K, Ward SM, Desrosiers MD, Stephens LA, Schoel WM, Li T, Lowell CA, Ling CC, Amrein MW, Shi Y (2008b) Receptor-independent, direct membrane binding leads to cell-surface lipid sorting and Syk kinase activation in dendritic cells. Immunity 29:807–818

    Article  PubMed  CAS  Google Scholar 

  • Pattu V, Qu B, Marshall M, Becherer U, Junker C, Matti U, Schwarz EC, Krause E, Hoth M, Rettig J (2011) Syntaxin7 is required for lytic granule release from cytotoxic T lymphocytes. Traffic 12:890–901

    Article  PubMed  CAS  Google Scholar 

  • Puri A, Hug P, Jernigan K, Barchi J, Kim HY, Hamilton J, Wiels J, Murray GJ, Brady RO, Blumenthal R (1998) The neutral glycosphingolipid globotriaosylceramide promotes fusion mediated by a CD4-dependent CXCR4-utilizing HIV type 1 envelope glycoprotein. Proc Natl Acad Sci USA 95:14435–14440

    Article  PubMed  CAS  Google Scholar 

  • Puri A, Rawat SS, Lin HM, Finnegan CM, Mikovits J, Ruscetti FW, Blumenthal R (2004) An inhibitor of glycosphingolipid metabolism blocks HIV-1 infection of primary T-cells. AIDS 18:849–858

    Article  PubMed  CAS  Google Scholar 

  • Qu B, Pattu V, Junker C, Schwarz EC, Bhat SS, Kummerow C, Marshall M, Matti U, Neumann F, Pfreundschuh M, Becherer U, Rieger H, Rettig J, Hoth M (2011) Docking of lytic granules at the immunological synapse in human CTL requires Vti1b-dependent pairing with CD3 endosomes. J Immunol 186:6894–6904

    Article  PubMed  CAS  Google Scholar 

  • Ramkumar S, Sakac D, Binnington B, Branch DR, Lingwood CA (2009) Induction of HIV-1 resistance: cell susceptibility to infection is an inverse function of globotriaosyl ceramide levels. Glycobiology 19:76–82

    Article  PubMed  CAS  Google Scholar 

  • Rawat SS, Gallo SA, Eaton J, Martin TD, Ablan S, KewalRamani VN, Wang JM, Blumenthal R, Puri A (2004) Elevated expression of GM3 in receptor-bearing targets confers resistance to human immunodeficiency virus type 1 fusion. J Virol 78:7360–7368

    Article  PubMed  CAS  Google Scholar 

  • Rawat SS, Zimmerman C, Johnson BT, Cho E, Lockett SJ, Blumenthal R, Puri A (2008) Restricted lateral mobility of plasma membrane CD4 impairs HIV-1 envelope glycoprotein mediated fusion. Mol Membr Biol 25:83–94

    Article  PubMed  CAS  Google Scholar 

  • Schelhaas M, Ewers H, Rajamaki ML, Day PM, Schiller JT, Helenius A (2008) Human papillomavirus type 16 entry: retrograde cell surface transport along actin-rich protrusions. PLoS Pathog 4:e1000148

    Article  PubMed  Google Scholar 

  • Seo YJ, Blake C, Alexander S, Hahm B (2010) Sphingosine 1-phosphate-metabolizing enzymes control influenza virus propagation and viral cytopathogenicity. J Virol 84:8124–8131

    Article  PubMed  CAS  Google Scholar 

  • Sherer NM, Lehmann MJ, Jimenez-Soto LF, Horensavitz C, Pypaert M, Mothes W (2007) Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nat Cell Biol 9:310–315

    Article  PubMed  CAS  Google Scholar 

  • Simons K, Gerl MJ (2010) Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11:688–699

    Article  PubMed  CAS  Google Scholar 

  • Strauss G, Lindquist JA, Arhel N, Felder E, Karl S, Haas TL, Fulda S, Walczak H, Kirchhoff F, Debatin KM (2009) CD95 co-stimulation blocks activation of naive T cells by inhibiting T cell receptor signaling. J Exp Med 206:1379–1393

    Article  PubMed  CAS  Google Scholar 

  • Tani H, Shiokawa M, Kaname Y, Kambara H, Mori Y, Abe T, Moriishi K, Matsuura Y (2010) Involvement of ceramide in the propagation of Japanese encephalitis virus. J Virol 84: 2798–2807

    Article  PubMed  CAS  Google Scholar 

  • Teichgraber V, Ulrich M, Endlich N, Riethmuller J, Wilker B, De Oliveira-Munding CC, van Heeckeren AM, Barr ML, von Kurthy G, Schmid KW, Weller M, Tummler B, Lang F, Grassme H, Doring G, Gulbins E (2008) Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat Med 14:382–391

    Article  PubMed  Google Scholar 

  • Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brugger B, Simons M (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319:1244–1247

    Article  PubMed  CAS  Google Scholar 

  • Utermohlen O, Herz J, Schramm M, Kronke M (2008) Fusogenicity of membranes: the impact of acid sphingomyelinase on innate immune responses. Immunobiology 213:307–314

    Article  PubMed  Google Scholar 

  • Vieira CR, Munoz-Olaya JM, Sot J, Jimenez-Baranda S, Izquierdo-Useros N, Abad JL, Apellaniz B, Delgado R, Martinez-Picado J, Alonso A, Casas J, Nieva JL, Fabrias G, Manes S, Goni FM (2010) Dihydrosphingomyelin impairs HIV-1 infection by rigidifying liquid-ordered membrane domains. Chem Biol 17:766–775

    Article  PubMed  CAS  Google Scholar 

  • Voisset C, Lavie M, Helle F, Op De Beeck A, Bilheu A, Bertrand-Michel J, Terce F, Cocquerel L, Wychowski C, Vu-Dac N, Dubuisson J (2008) Ceramide enrichment of the plasma membrane induces CD81 internalization and inhibits hepatitis C virus entry. Cell Microbiol 10:606–617

    Article  PubMed  CAS  Google Scholar 

  • Walsh KB, Marsolais D, Welch MJ, Rosen H, Oldstone MB (2010) Treatment with a sphingosine analog does not alter the outcome of a persistent virus infection. Virology 397:260–269

    Article  PubMed  CAS  Google Scholar 

  • Walsh KB, Teijaro JR, Wilker PR, Jatzek A, Fremgen DM, Das SC, Watanabe T, Hatta M, Shinya K, Suresh M, Kawaoka Y, Rosen H, Oldstone MB (2011) Suppression of cytokine storm with a sphingosine analog provides protection against pathogenic influenza virus. Proc Natl Acad Sci USA 108:12018–12023

    Article  PubMed  CAS  Google Scholar 

  • Yamane D, Zahoor MA, Mohamed YM, Azab W, Kato K, Tohya Y, Akashi H (2009) Inhibition of sphingosine kinase by bovine viral diarrhea virus NS3 is crucial for efficient viral replication and cytopathogenesis. J Biol Chem 284:13648–13659

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Alfsen A, Tudor D, Bomsel M (2008) The binding of HIV-1 gp41 membrane proximal domain to its mucosal receptor, galactosyl ceramide, is structure-dependent. Cell Calcium 43:73–82

    Article  PubMed  CAS  Google Scholar 

  • Zeidan YH, Jenkins RW, Hannun YA (2008) Remodeling of cellular cytoskeleton by the acid sphingomyelinase/ceramide pathway. J Cell Biol 181:335–350

    Article  PubMed  CAS  Google Scholar 

  • Zha X, Pierini LM, Leopold PL, Skiba PJ, Tabas I, Maxfield FR (1998) Sphingomyelinase treatment induces ATP-independent endocytosis. J Cell Biol 140:39–47

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Li X, Becker KA, Gulbins E (2008) Ceramide-enriched membrane domains-Structure and function. Biochim Biophys Acta 1788(1):178–183

    PubMed  Google Scholar 

Download references

Acknowledgment

The authors thank the Deutsche Forschungsgemeinschaft for financial support of their laboratory research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibylle Schneider-Schaulies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Schneider-Schaulies, J., Schneider-Schaulies, S. (2013). Viral Infections and Sphingolipids. In: Gulbins, E., Petrache, I. (eds) Sphingolipids in Disease. Handbook of Experimental Pharmacology, vol 216. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1511-4_16

Download citation

Publish with us

Policies and ethics