Skip to main content

Post-transcriptional Control of Gene Expression During Mouse Oogenesis

  • Chapter
  • First Online:

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 55))

Abstract

Post-transcriptional mechanisms play a central role in regulating gene expression during oogenesis and early embryogenesis. Growing oocytes accumulate an enormous quantity of messenger RNAs (mRNAs), but transcription decreases dramatically near the end of growth and is undetectable during meiotic maturation. Following fertilization, the embryo is initially transcriptionally inactive and then becomes active at a species-specific stage of early cleavage. Meanwhile, beginning during maturation and continuing after fertilization, the oocyte mRNAs are eliminated, allowing the embryonic genome to assume control of development. How the mammalian oocyte manages the storage, translation, and degradation of the huge quantity and diversity of mRNAs that it harbours has been the focus of enormous research effort and is the subject of this review. We discuss the roles of sequences within the 3′-untranslated region of certain mRNAs and the proteins that bind to them, sequence-non-specific RNA-binding proteins, and recent studies implicating ribonucleoprotein processing (P-) bodies and cytoplasmic lattices. We also discuss mechanisms that may control the temporally regulated translational activation of different mRNAs during meiotic maturation, as well as the signals that trigger silencing and degradation of the oocyte mRNAs. We close by highlighting areas for future research including the potential key role of small RNAs in regulating gene expression in oocytes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abaza I, Gebauer F (2008) Trading translation with RNA-binding proteins. RNA 14:404–409

    PubMed  CAS  Google Scholar 

  • Arnold DR, Francon P, Zhang J, Martin K, Clarke HJ (2008) Stem-loop binding protein expressed in growing oocytes is required for accumulation of mRNAs encoding histones H3 and H4 and for early embryonic development in the mouse. Dev Biol 313:347–358

    PubMed  CAS  Google Scholar 

  • Audic Y, Omilli F, Osborne HB (1997) Postfertilization deadenylation of mRNAs in Xenopus laevis embryos is sufficient to cause their degradation at the blastula stage. Mol Cell Biol 17:209–218

    PubMed  CAS  Google Scholar 

  • Bachvarova R, De Leon V (1977) Stored and polysomal ribosomes of mouse ova. Dev Biol 58:248–254

    PubMed  CAS  Google Scholar 

  • Bachvarova R, De Leon V, Johnson A, Kaplan G, Paynton BV (1985) Changes in total RNA, polyadenylated RNA, and actin mRNA during meiotic maturation of mouse oocytes. Dev Biol 108:325–331

    PubMed  CAS  Google Scholar 

  • Balagopal V, Parker R (2009) Polysomes, P bodies and stress granules: states and fates of eukaryotic mRNAs. Curr Opin Cell Biol 21:403–408

    PubMed  CAS  Google Scholar 

  • Barnard DC, Cao Q, Richter JD (2005) Differential phosphorylation controls Maskin association with eukaryotic translation initiation factor 4E and localization on the mitotic apparatus. Mol Cell Biol 25:7605–7615

    PubMed  CAS  Google Scholar 

  • Belloc E, Mendez R (2008) A deadenylation negative feedback mechanism governs meiotic metaphase arrest. Nature 452:1017–1021

    PubMed  CAS  Google Scholar 

  • Boag PR, Atalay A, Robida S, Reinke V, Blackwell TK (2008) Protection of specific maternal messenger RNAs by the P body protein CGH-1 (Dhh1/RCK) during Caenorhabditis elegans oogenesis. J Cell Biol 182:543–557

    PubMed  CAS  Google Scholar 

  • Braun JE, Huntzinger E, Fauser M, Izaurralde E (2011) GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets. Mol Cell 44:120–133

    PubMed  CAS  Google Scholar 

  • Brook M, Smith JWS, Gray NK (2009) The DAZL and PABP families: RNA-binding proteins with interrelated roles in translational control in oocytes. Reproduction 137:595–617

    PubMed  CAS  Google Scholar 

  • Brower PT, Gizang E, Boreen SM, Schultz RM (1981) Biochemical studies of mammalian oogenesis: synthesis and stability of various classes of RNA during growth of the mouse oocyte in vitro. Dev Biol 86:373–383

    PubMed  CAS  Google Scholar 

  • Burns DM, D'Ambrogio A, Nottrott S, Richter JD (2011) CPEB and two poly(A) polymerases control miR-122 stability and p53 mRNA translation. Nature 473:105–108

    PubMed  CAS  Google Scholar 

  • Cai C, Tamai K, Molyneaux K (2010) KHDC1B is a novel CPEB binding partner specifically expressed in mouse oocytes and early embryos. Mol Biol Cell 21:3137–3148

    PubMed  CAS  Google Scholar 

  • Capco DG, Gallicano GI, McGaughey RW, Downing KH, Larabell CA (1993) Cytoskeletal sheets of mammalian eggs and embryos: a lattice-like network of intermediate filaments. Cell Motil Cytoskeleton 24:85–99

    PubMed  CAS  Google Scholar 

  • Charlesworth A, Wilczynska A, Thampi P, Cox LL, MacNicol AM (2006) Musashi regulates the temporal order of mRNA translation during Xenopus oocyte maturation. EMBO J 25:2792–2801

    PubMed  CAS  Google Scholar 

  • Chekulaeva M, Mathys H, Zipprich JT, Attig J, Colic M, Parker R, Filipowicz W (2011) miRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs. Nat Struct Mol Biol 18:1218–1226

    PubMed  CAS  Google Scholar 

  • Chen J, Melton C, Suh N, Oh JS, Horner K, Xie F, Sette C, Blelloch R, Conti M (2011) Genome-wide analysis of translation reveals a critical role for deleted in azoospermia-like (Dazl) at the oocyte-to-zygote transition. Genes Dev 25:755–766

    PubMed  CAS  Google Scholar 

  • Colgan DF, Murthy KG, Prives C, Manley JL (1996) Cell-cycle related regulation of poly(A) polymerase by phosphorylation. Nature 384:282–285

    PubMed  CAS  Google Scholar 

  • Copeland PR, Wormington M (2001) The mechanism and regulation of deadenylation: identification and characterization of Xenopus PARN. RNA 7:875–886

    PubMed  CAS  Google Scholar 

  • Cowling VH (2009) Regulation of mRNA cap methylation. Biochem J 425:295–302

    CAS  Google Scholar 

  • Dai Y, Newman B, Moor R (2005) Translational regulation of MOS messenger RNA in pig oocytes. Biol Reprod 73:997–1003

    PubMed  CAS  Google Scholar 

  • De La Fuente R (2006) Chromatin modifications in the germinal vesicle (GV) of mammalian oocytes. Dev Biol 292:1–12

    Google Scholar 

  • Detivaud L, Pascreau G, Karaiskou A, Osborne HB, Kubiak JZ (2003) Regulation of EDEN-dependent deadenylation of Aurora A/Eg2-derived mRNA via phosphorylation and dephosphorylation in Xenopus laevis egg extracts. J Cell Sci 116:2697–2705

    PubMed  CAS  Google Scholar 

  • Eliscovich C, Peset I, Vernos I, Mendez R (2008) Spindle-localized CPE-mediated translation controls meiotic chromosome segregation. Nat Cell Biol 10:858–865

    PubMed  CAS  Google Scholar 

  • Eulalio A, Behm-Ansmant I, Izaurralde E (2007) P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol 8:9–22

    PubMed  CAS  Google Scholar 

  • Evsikov AV, Graber JH, Brockman JM, Hampl A, Holbrook AE, Singh P, Eppig JJ, Solter D, Knowles BB (2006) Cracking the egg: molecular dynamics and evolutionary aspects of the transition from the fully grown oocyte to embryo. Genes Dev 20:2713–2727

    PubMed  CAS  Google Scholar 

  • Fabian MR, Cieplak MK, Frank F, Morita M, Green J, Srikumar T, Nagar B, Yamamoto T, Raught B, Duchaine TF, Sonenberg N (2011) miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4-NOT. Nat Struct Mol Biol 18:1211–1217

    PubMed  CAS  Google Scholar 

  • Flemr M, Ma J, Schultz RM, Svoboda P (2010) P-body loss is concomitant with formation of a messenger RNA storage domain in mouse oocytes. Biol Reprod 82:1008–1017

    PubMed  CAS  Google Scholar 

  • Fox CA, Sheets MD, Wickens MP (1989) Poly(A) addition during maturation of frog oocytes: distinct nuclear and cytoplasmic activities and regulation by the sequence UUUUUAU. Genes Dev 3:2151–2162

    PubMed  CAS  Google Scholar 

  • Franks TM, Lykke-Andersen J (2008) The control of mRNA decapping and P-body formation. Mol Cell 32:605–615

    PubMed  CAS  Google Scholar 

  • Garneau NL, Wilusz J, Wilusz CJ (2007) The highways and byways of mRNA decay. Nat Rev Mol Cell Biol 8:113–126

    PubMed  CAS  Google Scholar 

  • Gebauer F, Richter JD (1996) Mouse cytoplasmic polyadenylylation element binding protein: an evolutionarily conserved protein that interacts with the cytoplasmic polyadenylylation elements of c-mos mRNA. Proc Natl Acad Sci USA 93:14602–14607

    PubMed  CAS  Google Scholar 

  • Gebauer F, Xu WH, Cooper GM, Richter JD (1994) Translational control by cytoplasmic polyadenylation of c-mos messenger-RNA is necessary for oocyte maturation in the mouse. EMBO J 13:5712–5720

    PubMed  CAS  Google Scholar 

  • Gershon E, Galiani D, Dekel N (2006) Cytoplasmic polyadenylation controls cdc25B mRNA translation in rat oocytes resuming meiosis. Reproduction 132:21–31

    PubMed  CAS  Google Scholar 

  • Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright AJ, Schier AF (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312:75–79

    PubMed  CAS  Google Scholar 

  • Goldstrohm AC, Wickens M (2008) Multifunctional deadenylase complexes diversify mRNA control. Nat Rev Mol Cell Biol 9:337–344

    PubMed  CAS  Google Scholar 

  • Goldstrohm AC, Hook BA, Seay DJ, Wickens M (2006) PUF proteins bind Pop2p to regulate messenger RNAs. Nat Struct Mol Biol 13:533–539

    PubMed  CAS  Google Scholar 

  • Groppo R, Richter JD (2009) Translational control from head to tail. Curr Opin Cell Biol 21:444–451

    PubMed  CAS  Google Scholar 

  • Hodgman R, Tay J, Mendez R, Richter JD (2001) CPEB phosphorylation and cytoplasmic polyadenylation are catalyzed by the kinase IAK1/Eg2 in maturing mouse oocytes. Development 128:2815–2822

    PubMed  CAS  Google Scholar 

  • Holt JE, Weaver J, Jones KT (2010) Spatial regulation of APCCdh1-induced cyclin B1 degradation maintains G2 arrest in mouse oocytes. Development 137:1297–1304

    PubMed  CAS  Google Scholar 

  • Huarte J, Belin D, Vassalli A, Strickland S, Vassalli JD (1987) Meiotic maturation of mouse oocytes triggers the translation and polyadenylation of dormant tissue-type plasminogen activator mRNA. Genes Dev 1:1201–1211

    PubMed  CAS  Google Scholar 

  • Huarte J, Stutz A, Oconnell ML, Gubler P, Belin D, Darrow AL, Strickland S, Vassalli JD (1992) Transient translational silencing by reversible mRNA deadenylation. Cell 69:1021–1030

    PubMed  CAS  Google Scholar 

  • Jackson RJ, Hellen CU, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11:113–127

    PubMed  CAS  Google Scholar 

  • Jung MY, Lorenz L, Richter JD (2006) Translational control by neuroguidin, a eukaryotic initiation factor 4E and CPEB binding protein. Mol Cell Biol 26:4277–4287

    PubMed  CAS  Google Scholar 

  • Kaneda M, Tang F, O'Carroll D, Lao K, Surani MA (2009) Essential role for Argonaute2 protein in mouse oogenesis. Epigenetics Chromatin 2:9

    PubMed  Google Scholar 

  • Kang MK, Han SJ (2011) Post-transcriptional and post-translational regulation during mouse oocyte maturation. BMB Rep 44:147–157

    PubMed  CAS  Google Scholar 

  • Kim JH, Richter JD (2006) Opposing polymerase-deadenylase activities regulate cytoplasmic polyadenylation. Mol Cell 24:173–183

    PubMed  CAS  Google Scholar 

  • Kleene KC, Distel RJ, Hecht NB (1984) Translational regulation and deadenylation of a protamine mRNA during spermiogenesis in the mouse. Dev Biol 105:71–79

    PubMed  CAS  Google Scholar 

  • Korner CG, Wormington M, Muckenthaler M, Schneider S, Dehlin E, Wahle E (1998) The deadenylating nuclease (DAN) is involved in poly(A) tail removal during the meiotic maturation of Xenopus oocytes. EMBO J 17:5427–5437

    PubMed  CAS  Google Scholar 

  • Kulkarni M, Ozgur S, Stoecklin G (2010) On track with P-bodies. Biochem Soc Trans 38:242–251

    PubMed  CAS  Google Scholar 

  • Lehtonen E, Lehto VP, Vartio T, Badley RA, Virtanen I (1983) Expression of cytokeratin polypeptides in mouse oocytes and preimplantation embryos. Dev Biol 100:158–165

    PubMed  CAS  Google Scholar 

  • Li L, Baibakov B, Dean J (2008) A subcortical maternal complex essential for preimplantation mouse embryogenesis. Dev Cell 15:416–425

    PubMed  CAS  Google Scholar 

  • Liu J, Linher K, Li J (2009) Porcine DAZL messenger RNA: its expression and regulation during oocyte maturation. Mol Cell Endocrinol 311:101–108

    PubMed  CAS  Google Scholar 

  • Ma J, Flemr M, Stein P, Berninger P, Malik R, Zavolan M, Svoboda P, Schultz RM (2010) MicroRNA activity is suppressed in mouse oocytes. Curr Biol 20:265–270

    PubMed  CAS  Google Scholar 

  • Marangos P, Carroll J (2008) Securin regulates entry into M-phase by modulating the stability of cyclin B. Nat Cell Biol 10:445–451

    PubMed  CAS  Google Scholar 

  • McGrew LL, Dworkin-Rastl E, Dworkin MB, Richter JD (1989) Poly(A) elongation during Xenopus oocyte maturation is required for translational recruitment and is mediated by a short sequence element. Genes Dev 3:803–815

    PubMed  CAS  Google Scholar 

  • Medvedev S, Yang J, Hecht NB, Schultz RM (2008) CDC2A (CDK1)-mediated phosphorylation of MSY2 triggers maternal mRNA degradation during mouse oocyte maturation. Dev Biol 321:205–215

    PubMed  CAS  Google Scholar 

  • Medvedev S, Pan H, Schultz RM (2011) Absence of MSY2 in mouse oocytes perturbs oocyte growth and maturation, RNA stability, and the transcriptome. Biol Reprod 85:575–583

    PubMed  CAS  Google Scholar 

  • Mendez R, Hake LE, Andresson T, Littlepage LE, Ruderman JV, Richter JD (2000a) Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature 404:302–307

    PubMed  CAS  Google Scholar 

  • Mendez R, Murthy KG, Ryan K, Manley JL, Richter JD (2000b) Phosphorylation of CPEB by Eg2 mediates the recruitment of CPSF into an active cytoplasmic polyadenylation complex. Mol Cell 6:1253–1259

    PubMed  CAS  Google Scholar 

  • Mendez R, Barnard D, Richter JD (2002) Differential mRNA translation and meiotic progression require Cdc2-mediated CPEB destruction. EMBO J 21:1833–1844

    PubMed  CAS  Google Scholar 

  • Millevoi S, Vagner S (2010) Molecular mechanisms of eukaryotic pre-mRNA 3′ end processing regulation. Nucleic Acids Res 38:2757–2774

    PubMed  CAS  Google Scholar 

  • Minshall N, Reiter MH, Weil D, Standart N (2007) CPEB interacts with an ovary-specific eIF4E and 4E-T in early Xenopus oocytes. J Biol Chem 282:37389–37401

    PubMed  CAS  Google Scholar 

  • Moore FL, Jaruzelska J, Fox MS, Urano J, Firpo MT, Turek PJ, Dorfman DM, Pera RAR (2003) Human Pumilio-2 is expressed in embryonic stem cells and germ cells and interacts with DAZ (Deleted in AZoospermia) and DAZ-Like proteins. Proc Natl Acad Sci USA 100:538–543

    PubMed  CAS  Google Scholar 

  • Morris AR, Mukherjee N, Keene JD (2008) Ribonomic analysis of human Pum1 reveals cis-trans conservation across species despite evolution of diverse mRNA target sets. Mol Cell Biol 28:4093–4103

    PubMed  CAS  Google Scholar 

  • Murai S, Stein P, Buffone MG, Yamashita S, Schultz RM (2010) Recruitment of Orc6l, a dormant maternal mRNA in mouse oocytes, is essential for DNA replication in 1-cell embryos. Dev Biol 341:205–212

    PubMed  CAS  Google Scholar 

  • Murchison EP, Stein P, Xuan Z, Pan H, Zhang MQ, Schultz RM, Hannon GJ (2007) Critical roles for Dicer in the female germline. Genes Dev 21:682–693

    PubMed  CAS  Google Scholar 

  • Nakahata S, Katsu Y, Mita K, Inoue K, Nagahama Y, Yamashita M (2001) Biochemical identification of Xenopus pumilio as a sequence-specific cyclin B1 mRNA-binding protein that physically interacts with a Nanos homolog, Xcat-2, and a cytoplasmic polyadenylation element-binding protein. J Biol Chem 276:20945–20953

    PubMed  CAS  Google Scholar 

  • Nakahata S, Kotani T, Mita K, Kawasaki T, Katsu Y, Nagahama Y, Yamashita M (2003) Involvement of Xenopus pumilio in the translational regulation that is specific to cyclin B1 mRNA during oocyte maturation. Mech Dev 120:865–880

    PubMed  CAS  Google Scholar 

  • Nakanishi T, Kubota H, Ishibashi N, Kumagai S, Watanabe H, Yamashita M, S-i K, Miyado K, Baba T (2006) Possible role of mouse poly(A) polymerase mGLD-2 during oocyte maturation. Dev Biol 289:115–126

    PubMed  CAS  Google Scholar 

  • Nakanishi T, Kumagai S, Kimura M, Watanabe H, Sakurai T, Kashiwabara S, Baba T (2007) Disruption of mouse poly(A) polymerase mGLD-2 does not alter polyadenylation status in oocytes and somatic cells. Biochem Biophys Res Commun 364:14–19

    PubMed  CAS  Google Scholar 

  • Oh B, Hwang SY, McLaughlin J, Solter D, Knowles BB (2000) Timely translation during the mouse oocyte-to-embryo transition. Development 127:3795–3803

    PubMed  CAS  Google Scholar 

  • Paillard L, Omilli F, Legagneux V, Bassez T, Maniey D, Osborne HB (1998) EDEN and EDEN-BP, a cis element and an associated factor that mediate sequence-specific mRNA deadenylation in Xenopus embryos. EMBO J 17:278–287

    PubMed  CAS  Google Scholar 

  • Pan H, O'Brien MJ, Wigglesworth K, Eppig JJ, Schultz RM (2005) Transcript profiling during mouse oocyte development and the effect of gonadotropin priming and development in vitro. Dev Biol 286:493–506

    PubMed  CAS  Google Scholar 

  • Parker R, Sheth U (2007) P bodies and the control of mRNA translation and degradation. Mol Cell 25:635–646

    PubMed  CAS  Google Scholar 

  • Paynton BV, Rempel R, Bachvarova R (1988) Changes in state of adenylation and time course of degradation of maternal mRNAs during oocyte maturation and early embryonic development in the mouse. Dev Biol 129:304–314

    PubMed  CAS  Google Scholar 

  • Piqué M, López JM, Foissac S, Guigó R, Méndez R (2008) A combinatorial code for CPE-mediated translational control. Cell 132:434–448

    PubMed  Google Scholar 

  • Racki WJ, Richter JD (2006) CPEB controls oocyte growth and follicle development in the mouse. Development 133:4527–4537

    PubMed  CAS  Google Scholar 

  • Radford HE, Meijer HA, de Moor CH (2008) Translational control by cytoplasmic polyadenylation in Xenopus oocytes. Biochim Biophys Acta 1779:217–229

    PubMed  CAS  Google Scholar 

  • Reverte CG, Ahearn MD, Hake LE (2001) CPEB degradation during Xenopus oocyte maturation requires a PEST domain and the 26S proteasome. Dev Biol 231:447–458

    PubMed  CAS  Google Scholar 

  • Richter JD, Sonenberg N (2005) Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 433:477–480

    PubMed  CAS  Google Scholar 

  • Rouget C, Papin C, Boureux A, Meunier AC, Franco B, Robine N, Lai EC, Pelisson A, Simonelig M (2010) Maternal mRNA deadenylation and decay by the piRNA pathway in the early Drosophila embryo. Nature 467:1128–1132

    PubMed  CAS  Google Scholar 

  • Salles FJ, Darrow AL, O'Connell ML, Strickland S (1992) Isolation of novel murine maternal mRNAs regulated by cytoplasmic polyadenylation. Genes Dev 6:1202–1212

    PubMed  CAS  Google Scholar 

  • Schmid M, Kuchler B, Eckmann CR (2009) Two conserved regulatory cytoplasmic poly(A) polymerases, GLD-4 and GLD-2, regulate meiotic progression in C. elegans. Genes Dev 23:824–836

    PubMed  CAS  Google Scholar 

  • Setoyama D, Yamashita M, Sagata N (2007) Mechanism of degradation of CPEB during Xenopus oocyte maturation. Proc Natl Acad Sci USA 104:18001–18006

    PubMed  CAS  Google Scholar 

  • Standart N, Jackson RJ (2007) MicroRNAs repress translation of m7G ppp-capped target mRNAs in vitro by inhibiting initiation and promoting deadenylation. Genes Dev 21:1975–1982

    PubMed  CAS  Google Scholar 

  • Standart N, Minshall N (2008) Translational control in early development: CPEB, P-bodies and germinal granules. Biochem Soc Trans 36:671–676

    PubMed  CAS  Google Scholar 

  • Strickland S, Huarte J, Belin D, Vassalli A, Rickles RJ, Vassalli JD (1988) Antisense RNA directed against the 3′ noncoding region prevents dormant mRNA activation in mouse oocytes. Science 241:680–684

    PubMed  CAS  Google Scholar 

  • Stutz A, Huarte J, Gubler P, Conne B, Belin D, Vassalli JD (1997) In vivo antisense oligodeoxynucleotide mapping reveals masked regulatory elements in an mRNA dormant in mouse oocytes. Mol Cell Biol 17:1759–1767

    PubMed  CAS  Google Scholar 

  • Stutz A, Conne B, Huarte J, Gubler P, Volkel V, Flandin P, Vassalli JD (1998) Masking, unmasking, and regulated polyadenylation cooperate in the translational control of a dormant mRNA in mouse oocytes. Genes Dev 12:2535–2548

    PubMed  CAS  Google Scholar 

  • Su Y-Q, Sugiura K, Woo Y, Wigglesworth K, Kamdar S, Affourtit J, Eppig JJ (2007) Selective degradation of transcripts during meiotic maturation of mouse oocytes. Dev Biol 302:104–117

    PubMed  CAS  Google Scholar 

  • Sugimura I, Lilly MA (2006) Bruno inhibits the expression of mitotic cyclins during the prophase I meiotic arrest of Drosophila oocytes. Dev Cell 10:127–135

    PubMed  CAS  Google Scholar 

  • Suh N, Blelloch R (2011) Small RNAs in early mammalian development: from gametes to gastrulation. Development 138:1653–1661

    PubMed  CAS  Google Scholar 

  • Suh N, Baehner L, Moltzahn F, Melton C, Shenoy A, Chen J, Blelloch R (2010) MicroRNA function Is globally suppressed in mouse oocytes and early embryos. Curr Biol 20:271–277

    PubMed  CAS  Google Scholar 

  • Swetloff A, Conne B, Huarte J, Pitetti J-L, Nef S, Vassalli J-D (2009) Dcp1-bodies in mouse oocytes. Mol Biol Cell 20:4951–4961

    PubMed  CAS  Google Scholar 

  • Tadros W, Lipshitz HD (2009) The maternal-to-zygotic transition: a play in two acts. Development 136:3033–3042

    PubMed  CAS  Google Scholar 

  • Tadros W, Goldman AL, Babak T, Menzies F, Vardy L, Orr-Weaver T, Hughes TR, Westwood JT, Smibert CA, Lipshitz HD (2007) SMAUG is a major regulator of maternal mRNA destabilization in Drosophila and its translation is activated by the PAN GU kinase. Dev Cell 12:143–155

    PubMed  CAS  Google Scholar 

  • Tam OH, Aravin AA, Stein P, Girard A, Murchison EP, Cheloufi S, Hodges E, Anger M, Sachidanandam R, Schultz RM, Hannon GJ (2008) Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453:534–538

    PubMed  CAS  Google Scholar 

  • Tang F (2010) Small RNAs in mammalian germline: tiny for immortal. Differentiation 79:141–146

    PubMed  CAS  Google Scholar 

  • Tang F, Kaneda M, O'Carroll D, Hajkova P, Barton SC, Sun YA, Lee C, Tarakhovsky A, Lao K, Surani MA (2007) Maternal microRNAs are essential for mouse zygotic development. Genes Dev 21:644–648

    PubMed  CAS  Google Scholar 

  • Tay J, Hodgman R, Richter JD (2000) The control of cyclin B1 mRNA translation during mouse oocyte maturation. Dev Biol 221:1–9

    PubMed  CAS  Google Scholar 

  • Thelie A, Papillier P, Pennetier S, Perreau C, Traverso JM, Uzbekova S, Mermillod P, Joly C, Humblot P, Dalbies-Tran R (2007) Differential regulation of abundance and deadenylation of maternal transcripts during bovine oocyte maturation in vitro and in vivo. BMC Dev Biol 7:125

    PubMed  Google Scholar 

  • Tremblay K, Vigneault C, McGraw S, Sirard MA (2005) Expression of cyclin B1 messenger RNA isoforms and initiation of cytoplasmic polyadenylation in the bovine oocyte. Biol Reprod 72:1037–1044

    PubMed  CAS  Google Scholar 

  • Tritschler F, Huntzinger E, Izaurralde E (2010) Role of GW182 proteins and PABPC1 in the miRNA pathway: a sense of deja vu. Nat Rev Mol Cell Biol 11:379–384

    PubMed  CAS  Google Scholar 

  • Uzbekova S, Arlot-Bonnemains Y, Dupont J, Dalbies-Tran R, Papillier P, Pennetier S, Thelie A, Perreau C, Mermillod P, Prigent C, Uzbekov R (2008) Spatio-temporal expression patterns of Aurora kinases A, B, and C and cytoplasmic polyadenylation-element-binding protein in bovine oocytes during meiotic maturation. Biol Reprod 78:218–233

    PubMed  CAS  Google Scholar 

  • Vardy L, Orr-Weaver TL (2007a) The Drosophila PNG kinase complex regulates the translation of cyclin B. Dev Cell 12:157–166

    PubMed  CAS  Google Scholar 

  • Vardy L, Orr-Weaver TL (2007b) Regulating translation of maternal messages: multiple repression mechanisms. Trends Cell Biol 17:547–554

    PubMed  CAS  Google Scholar 

  • Vassalli JD, Huarte J, Belin D, Gubler P, Vassalli A, O'Connell ML, Parton LA, Rickles RJ, Strickland S (1989) Regulated polyadenylation controls mRNA translation during meiotic maturation of mouse oocytes. Genes Dev 3:2163–2171

    PubMed  CAS  Google Scholar 

  • VerMilyea MD, Maneck M, Yoshida N, Blochberger I, Suzuki E, Suzuki T, Spang R, Klein CA, Perry ACF (2011) Transcriptome asymmetry within mouse zygotes but not between early embryonic sister blastomeres. EMBO J 30:1841–1851

    PubMed  CAS  Google Scholar 

  • Villaescusa JC, Allard P, Carminati E, Kontogiannea M, Talarico D, Blasi F, Farookhi R, Verrotti AC (2006) Clast4, the murine homologue of human eIF4E-Transporter, is highly expressed in developing oocytes and post-translationally modified at meiotic maturation. Gene 367:101–109

    PubMed  CAS  Google Scholar 

  • von Roretz C, Gallouzi IE (2008) Decoding ARE-mediated decay: is microRNA part of the equation? J Cell Biol 181:189–194

    Google Scholar 

  • Watanabe T, Totoki Y, Toyoda A, Kaneda M, Kuramochi-Miyagawa S, Obata Y, Chiba H, Kohara Y, Kono T, Nakano T, Surani MA, Sakaki Y, Sasaki H (2008) Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453:539–543

    PubMed  CAS  Google Scholar 

  • Welk JF, Charlesworth A, Smith GD, MacNicol AM (2001) Identification and characterization of the gene encoding human cytoplasmic polyadenylation element binding protein. Gene 263:113–120

    PubMed  CAS  Google Scholar 

  • Wickens M, Bernstein DS, Kimble J, Parker R (2002) A PUF family portrait: 3′UTR regulation as a way of life. Trends Genet 18:150–157

    PubMed  CAS  Google Scholar 

  • Wright PW, Bolling LC, Calvert ME, Sarmento OF, Berkeley EV, Shea MC, Hao Z, Jayes FC, Bush LA, Shetty J, Shore AN, Reddi PP, Tung KS, Samy E, Allietta MM, Sherman NE, Herr JC, Coonrod SA (2003) ePAD, an oocyte and early embryo-abundant peptidylarginine deiminase-like protein that localizes to egg cytoplasmic sheets. Dev Biol 256:74–89

    Google Scholar 

  • Xu EY, Chang R, Salmon NA, Reijo Pera RA (2007) A gene trap mutation of a murine homolog of the Drosophila stem cell factor Pumilio results in smaller testes but does not affect litter size or fertility. Mol Reprod Dev 74:912–921

    PubMed  CAS  Google Scholar 

  • Yamashita A, Chang TC, Yamashita Y, Zhu W, Zhong Z, Chen CY, Shyu AB (2005) Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat Struct Mol Biol 12:1054–1063

    PubMed  CAS  Google Scholar 

  • Yang Q, Allard P, Huang M, Zhang W, Clarke HJ (2010) Proteasomal activity is required to initiate and to sustain translational activation of messenger RNA encoding the stem-loop-binding protein during meiotic maturation in mice. Biol Reprod 82:123–131

    PubMed  CAS  Google Scholar 

  • Yu J, Hecht NB, Schultz RM (2001) Expression of MSY2 in mouse oocytes and preimplantation embryos. Biol Reprod 65:1260–1270

    PubMed  CAS  Google Scholar 

  • Yu JY, Hecht NB, Schultz RM (2002) RNA-binding properties and translation repression in vitro by germ cell-specific MSY2 protein. Biol Reprod 67:1093–1098

    PubMed  CAS  Google Scholar 

  • Yu J, Deng M, Medvedev S, Yang J, Hecht NB, Schultz RM (2004) Transgenic RNAi-mediated reduction of MSY2 in mouse oocytes results in reduced fertility. Dev Biol 268:195–206

    PubMed  CAS  Google Scholar 

  • Yurttas P, Vitale AM, Fitzhenry RJ, Cohen-Gould L, Wu W, Gossen JA, Coonrod SA (2008) Role for PADI6 and the cytoplasmic lattices in ribosomal storage in oocytes and translational control in the early mouse embryo. Development 135:2627–2636

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work in the author’s laboratory is supported by the Canadian Institutes of Health Research and the Natural Sciences and Engineering Research Council, as well as by funds from the Royal Victoria Hospital and McGill University Health Centre Foundations. The MUHC Research Institute is supported by the Fonds de Recherche du Quebec. Thanks to Professor Marco Conti (University of California at San Francisco) for comments and suggestions on the manuscript. I apologize to those whose work could not be cited owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh J. Clarke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Clarke, H.J. (2012). Post-transcriptional Control of Gene Expression During Mouse Oogenesis. In: Kubiak, J. (eds) Mouse Development. Results and Problems in Cell Differentiation, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30406-4_1

Download citation

Publish with us

Policies and ethics