Skip to main content

Paying for the Tolls: The High Cost of the Innate Immune System for the Cardiac Myocyte

  • Chapter
  • First Online:
The Immunology of Cardiovascular Homeostasis and Pathology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1003))

Abstract

The cardiac myocyte differs strikingly from the specialized cells of the immune system, which has two different responses to invading organisms and tissue damage. Adaptive or acquired immunity generates highly specific antibodies in response to threats and is an essential component of immunity; however, adaptive immunity can take 4–7 days to mobilize, and a more primitive response, innate immunity, fills the gap. Innate immunity is expressed in complex and in primitive life forms. Specialized receptors, Toll-like receptors (TLRs), which are widely distributed throughout different tissues recognize danger signals and rapidly respond with the release of noxious substances, such as TNFα. The problem is that many endogenous molecules have been found to act as ligands for specific TLRs, and when these molecules are released into the extracellular environment, they can cause problems by activating innate immunity and an inflammatory response. In cardiac myocytes heat shock protein (HSP)60 can activate TLR4, as can HMGB1, and this type of response can amplify the response to ischemia/reperfusion leading to increased cell and tissue injury. Activation of TLRs can potentially amplify chronic, inflammatory diseases, such as ischemic heart failure. Thus, it is important to understand the regulation of the TLRs and their downstream effects. This chapter will focus on the TLRs and cardiac myocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Janeway CA Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54(Pt 1):1–13.

    Article  CAS  PubMed  Google Scholar 

  2. Kim SC, Stice JP, Chen L, Jung JS, Gupta S, Wang Y, et al. Extracellular heat shock protein 60, cardiac myocytes and apoptosis. Circ Res. 2009;105(12):1186–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kaczorowski DJ, Nakao A, Mollen KP, Vallabhaneni R, Sugimoto R, Kohmoto J, et al. Toll-like receptor 4 mediates the early inflammatory response after cold ischemia/reperfusion. Transplantation. 2007;84(10):1279–87.

    Article  CAS  PubMed  Google Scholar 

  4. Boyd JH, Mathur S, Wang Y, Bateman RM, Walley KR. Toll-like receptor stimulation in cardiomyocytes decreases contractility and initiates an NF-kB dependent inflammatory response. Cardiovasc Res. 2006;72:384–93.

    Article  CAS  PubMed  Google Scholar 

  5. Tian J, Guo X, Liu XM, Liu L, Weng QF, Dong SJ, et al. Extracellular HSP60 induces inflammation through activating and up-regulating TLRs in cardiomyocytes. Cardiovasc Res. 2013;98(3):391–401.

    Article  CAS  PubMed  Google Scholar 

  6. Avlas O, Srara S, Shainberg A, Aravot D, Hochhauser E. Silencing cardiomyocyte TLR4 reduces injury following hypoxia. Exp Cell Res. 2016;348(2):115–22.

    Article  CAS  PubMed  Google Scholar 

  7. Timmers L, Sluijter JPG, van Keulen JK, Hoefer IE, Nederhoff MGJ, Goumans MJ, et al. Toll-like receptor 4 mediates maladaptive left ventricular remodeling and impairs cardiac function after myocardial infarction. Circ Res. 2008;102(2):257–64.

    Article  CAS  PubMed  Google Scholar 

  8. Anderson KV, Jürgens G, Nüsslein-Volhard C. Establishment of dorsal-ventral polarity in the drosophila embryo: genetic studies on the role of the toll gene product. Cell. 1985;42(3):779–89.

    Article  CAS  PubMed  Google Scholar 

  9. Imler JL, Hoffmann JA. Toll receptors in innate immunity. Trends Cell Biol. 2001;11(7):304–11.

    Article  CAS  PubMed  Google Scholar 

  10. Takeuchi O, Sato S, Horiuchi T, Hoshino K, Takeda K, Dong Z, et al. Cutting edge: role of toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol. 2002;169(1):10–4.

    Article  CAS  PubMed  Google Scholar 

  11. Asea A, Rehli M, Kabingu E, Boch JA, Bar‚ O, Auron PE, et al. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem. 2002;277:15028–34.

    Article  CAS  PubMed  Google Scholar 

  12. Chavakis E, Hain A, Vinci M, Carmona G, Bianchi ME, Vajkoczy P, et al. High-mobility group box 1 activates integrin-dependent homing of endothelial progenitor cells. Circ Res. 2007;100(2):204–12.

    Article  CAS  PubMed  Google Scholar 

  13. Yu M, Wang H, Ding A, Golenbock DT, Latz E, Czura CJ, et al. HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock. 2006;26:174–9.

    Article  CAS  PubMed  Google Scholar 

  14. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-[kappa]B by toll-like receptor 3. Nature. 2001;413(6857):732–8.

    Article  CAS  PubMed  Google Scholar 

  15. Cole JE, Navin TJ, Cross AJ, Goddard ME, Alexopoulou L, Mitra AT, et al. Unexpected protective role for toll-like receptor 3 in the arterial wall. Proc Natl Acad Sci U S A. 2011;108(6):2372–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ohashi K, Burkart V, Flohe S, Kolb H. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol. 2000;164:558–61.

    Article  CAS  PubMed  Google Scholar 

  17. Li Y, Si R, Feng Y, Chen HH, Zou L, Wang E, et al. Myocardial ischemia activates an injurious innate immune signaling via cardiac heat shock protein 60 and toll-like receptor 4. J Biol Chem. 2011;286(36):31308–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bulut Y, Faure E, Thomas L, Karahashi H, Michelsen KS, Equils O, et al. Chlamydial heat shock protein 60 activates macrophages and endothelial cells through toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J Immunol. 2002;168(3):1435–40.

    Article  CAS  PubMed  Google Scholar 

  19. Rhee SH, Hwang D. Murine TOLL-like receptor 4 confers lipopolysaccharide responsiveness as determined by activation of NF kappa B and expression of the inducible cyclooxygenase. J Biol Chem. 2000;275(44):34035–40.

    Article  CAS  PubMed  Google Scholar 

  20. Sasu S, LaVerda D, Qureshi N, Golenbock DT, Beasley D. Chlamydia pneumoniae and chlamydial heat shock protein 60 stimulate proliferation of human vascular smooth muscle cells via toll-like receptor 4 and p44/p42 mitogen-activated protein kinase activation. Circ Res. 2001;89:244–50.

    Article  CAS  PubMed  Google Scholar 

  21. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, et al. The innate immune response to bacterial flagellin is mediated by toll-like receptor 5. Nature. 2001;410(6832):1099–103.

    Article  CAS  PubMed  Google Scholar 

  22. Takeuchi O, Kawai T, Mühlradt PF, Morr M, Radolf JD, Zychlinsky A, et al. Discrimination of bacterial lipoproteins by toll-like receptor 6. Int Immunol. 2001;13(7):933–40.

    Article  CAS  PubMed  Google Scholar 

  23. Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB, et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci U S A. 2000;97(25):13766–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol. 2002;3(2):196–200.

    Article  CAS  PubMed  Google Scholar 

  25. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science. 2004;303(5663):1526.

    Article  CAS  PubMed  Google Scholar 

  26. Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science. 2004;303(5663):1529.

    Article  CAS  PubMed  Google Scholar 

  27. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, et al. A toll-like receptor recognizes bacterial DNA. Nature. 2000;408(6813):740–5.

    Article  CAS  PubMed  Google Scholar 

  28. Jiang S, Li X, Hess NJ, Guan Y, Tapping RI. TLR10 is a negative regulator of both MyD88-dependent and -independent TLR signaling. J Immunol. 2016;196(9):3834–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Oosting M, Cheng SC, Bolscher JM, Vestering-Stenger R, Plantinga TS, Verschueren IC, et al. Human TLR10 is an anti-inflammatory pattern-recognition receptor. Proc Natl Acad Sci U S A. 2014;111(42):E4478–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Plattner F, Yarovinsky F, Romero S, Didry D, Carlier MF, Sher A, et al. Toxoplasma profilin is essential for host cell invasion and TLR11-dependent induction of an interleukin-12 response. Cell Host Microbe. 2008;3(2):77–87.

    Article  CAS  PubMed  Google Scholar 

  31. Koblansky AA, Jankovic D, Oh H, Hieny S, Sungnak W, Mathur R, et al. Recognition of profilin by toll-like receptor 12 is critical for host resistance to toxoplasma gondii. Immunity. 2013;38(1):119–30.

    Article  CAS  PubMed  Google Scholar 

  32. Oldenburg M, Krüger A, Ferstl R, Kaufmann A, Nees G, Sigmund A, et al. TLR13 recognizes bacterial 23S rRNA devoid of erythromycin resistance-forming modification. Science. 2012;337(6098):1111.

    Article  CAS  PubMed  Google Scholar 

  33. Akira S, Takeda K. Toll-like receptor signaling. Nat Rev Immunol. 2004;4(7):499–511.

    Article  CAS  PubMed  Google Scholar 

  34. Hasan U, Chaffois C, Gaillard C, Saulnier V, Merck E, Tancredi S, et al. Human TLR10 is a functional receptor, expressed by B cells and plasmacytoid dendritic cells, which activates gene transcription through MyD88. J Immunol. 2005;174(5):2942–50.

    Article  CAS  PubMed  Google Scholar 

  35. Benjamin IJ, McMillan DR. Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease. Circ Res. 1998;83:117–32.

    Article  CAS  PubMed  Google Scholar 

  36. Nollen EAA, Morimoto RI. Chaperoning signaling pathways: molecular chaperones as stress-sensing ‘heat shock’ proteins. J Cell Sci. 2002;115(14):2809–16.

    CAS  PubMed  Google Scholar 

  37. Knowlton AA. The role of heat shock proteins in the heart. J Mol Cell Cardiol. 1995;27:121–31.

    Article  CAS  PubMed  Google Scholar 

  38. Nakano M, Mann DL, Knowlton AA. Blocking the endogenous increase in HSP72 increases susceptibility to hypoxia and reoxygenation in isolated adult feline cardiocytes. Circulation. 1997;95(6):1523–31.

    Article  CAS  PubMed  Google Scholar 

  39. Neupert W, Herrmann JM. Translocation of proteins into mitochondria. Annu Rev Biochem. 2007;76(1):723–49.

    Article  CAS  PubMed  Google Scholar 

  40. Young JC, Agashe VR, Siegers K, Hartl FU. Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol. 2004;5(10):781–91.

    Article  CAS  PubMed  Google Scholar 

  41. Fink AL. Chaperone-mediated protein folding. Physiol Rev. 1999;79(2):425–49.

    CAS  PubMed  Google Scholar 

  42. Knowlton AA, Srivatsa U. Heat-shock protein 60 and cardiovascular disease: a paradoxical role. Futur Cardiol. 2008;4:151–61.

    Article  CAS  Google Scholar 

  43. Kobba S, Kim SC, Chen L, Kim E, Tran AL, Knuefermann P, et al. The heat shock paradox and cardiac myocytes: role of heat shock factor. Shock. 2011;35(5):478–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Beckmann RP, Mizzen LA, Welch WJ. Interaction of HSP 70 with newly synthesized proteins: implications for protein folding and assembly. Science. 1990;248:850–4.

    Article  CAS  PubMed  Google Scholar 

  45. Lewthwaite J, Owen N, Coates A, Henderson B, Steptoe A. Circulating human heat shock protein 60 in the plasma of British civil servants: relationship to physiological and psychosocial stress. Circulation. 2002;106(2):196–201.

    Article  CAS  PubMed  Google Scholar 

  46. Srivastava P. Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune response. Annu Rev Immunol. 2002;20:395–425.

    Article  CAS  PubMed  Google Scholar 

  47. Xu Q, Schett G, Perschinka H, Mayr M, Egger G, Oberhollenser F, et al. Serum soluble heat shock protein 60 is elevated in subjects with atherosclerosis in a general population. Circulation. 2000;102:14–20.

    Article  CAS  PubMed  Google Scholar 

  48. Knowlton AA, Brecher P, Apstein CS. Rapid expression of heat shock protein in the rabbit after brief cardiac ischemia. J Clin Investig. 1991;87:139–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hollander JM, Martin JL, Belke DD, Scott BT, Swanson E, Krishnamoorthy V, et al. Overexpression of wild-type heat shock protein 27 and a nonphosphorylatable heat shock protein 27 mutant protects against ischemia/reperfusion injury in a transgenic mouse model. Circulation. 2004;29:01.

    Google Scholar 

  50. Ooie T, Takahashi N, Saikawa T, Nawata T, Arikawa M, Yamanaka K, et al. Single oral dose of geranylgeranylacetone induces heat-shock protein 72 and renders protection against ischemia/reperfusion injury in rat heart. Circulation. 2001;104(15):1837–43.

    Article  CAS  PubMed  Google Scholar 

  51. Okubo S, Wildner O, Shah MR, Chelliah JC, Hess ML, Kukreja RC. Gene transfer of heat-shock protein 70 reduces infarct size in vivo after ischemia/reperfusion in the rabbit heart. Circulation. 2001;103(6):877–81.

    Article  CAS  PubMed  Google Scholar 

  52. Radford NB, Fina M, Benjamin IJ, Moreadith RW, Graves KH, Zhao P, et al. Cardioprotective effects of 70-kDa heat shock protein in transgenic mice. Proc Natil Acad Sci U S A. 1996;93:2339–42.

    Article  CAS  Google Scholar 

  53. Chen W, Syldath U, Bellmann K, Burkart V, Kolb H. Human 60-kDa heat-shock protein: a danger signal to the innate immune system. J Immunol. 1999;162:3212–9.

    CAS  PubMed  Google Scholar 

  54. Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H. HSP70 as endogenous stimulus of the toll/interleukin-1 receptor signal pathway. J Biol Chem. 2002;277(17):15107–12.

    Article  CAS  PubMed  Google Scholar 

  55. Dybdahl B, Wahba A, Lien E, Flo TH, Waage A, Qureshi N, et al. Inflammatory response after open heart surgery: release of heat-shock protein 70 and signaling through toll-like receptor-4. Circulation. 2002;105(6):685–90.

    Article  CAS  PubMed  Google Scholar 

  56. Blasi C, Kim E, Knowlton AA. Improved metabolic control in diabetes, HSP60, and proinflammatory mediators. Autoimmune Dis. 2012;2012:346501.

    PubMed  PubMed Central  Google Scholar 

  57. Pespeni M, Mackersie RC, Lee H, Morabito D, Hodnett M, Howard M, et al. Serum levels of Hsp60 correlate with the development of acute lung injury after trauma. J Surg Res. 2005;126(1):41–7.

    Article  CAS  PubMed  Google Scholar 

  58. Shamaei-Tousi A, Stephens JW, Bin R, Cooper JA, Steptoe A, Coates ARM, et al. Association between plasma levels of heat shock protein 60 and cardiovascular disease in patients with diabetes mellitus. Eur Heart J. 2006;27(13):1565–70.

    Article  CAS  PubMed  Google Scholar 

  59. Gupta S, Knowlton AA. HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway. Am J Physiol Heart Circ Physiol. 2007;292:H3052–6.

    Article  CAS  PubMed  Google Scholar 

  60. Malik ZA, Kott KS, Poe AJ, Kuo T, Chen L, Ferrara KW, et al. Cardiac myocyte exosomes: stability, HSP60, and proteomics. Am J Physiol Heart Circ Physiol. 2013;304(7):H954–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Go MF, Knowlton AA. Heat shock proteins (HSPs) in H-pylori associated disease. Gut. 2000;47:A39–40.

    Google Scholar 

  62. Portig I, Pankuweit S, Maisch B. Antibodies against stress proteins in sera of patients with dilated cardiomyopathy. J Mol Cell Cardiol. 1997;29:2245–51.

    Article  CAS  PubMed  Google Scholar 

  63. Veres A, Szamosi T, Ablonczy M, Szamosi JT, Singh M, Karadi I, et al. Complement activating antibodies against the human 60 kDa heat shock protein as an independent family risk factor of coronary heart disease. Eur J Clin Investig. 2002;32:405–10.

    Article  CAS  Google Scholar 

  64. Prohászka Z, Singh M, Nagy K, Kiss E, Lakos G, Duba J, et al. Heat shock protein 70 is a potent activator of the human complement system. Cell Stress Chaperones. 2002;7:17–22.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zhu J, Quyyumi AA, Rott D, Csako G, Wu H, Halcox J, et al. Antibodies to human heat-shock protein 60 are associated with the presence and severity of coronary artery disease: evidence for an autoimmune component of atherogenesis. Circulation. 2001;103(8):1071–5.

    Article  CAS  PubMed  Google Scholar 

  66. Mayr M, Kiechl S, Willeit J, Wick G, Xu Q. Infections, immunity, and atherosclerosis: associations of antibodies to chlamydia pneumoniae, helicobacter pylori, and cytomegalovirus with immune reactions to heat-shock protein 60 and carotid or femoral atherosclerosis. Circulation. 2000;102(8):833–9.

    Article  CAS  PubMed  Google Scholar 

  67. Feng H, Zeng Y, Whitesell L, Katsanis E. Stressed apoptotic tumor cells express heat shock proteins and elicit tumor-specific immunity. Blood. 2001;97:3505–12.

    Article  CAS  PubMed  Google Scholar 

  68. Mor SH, Breloer M, von Bonin A. Eukaryotic heat shock proteins as molecular links in innate and adaptive immune responses: HSP60-mediated activation of cytotoxic T cells. Int Immunol. 2001;13:1121–7.

    Article  Google Scholar 

  69. Heng MK, Heng MCY. Heat-shock protein 65 and activated g/d; T cells in injured arteries. Lancet. 1994;344(8927):921–3.

    Article  CAS  PubMed  Google Scholar 

  70. Zanin-Zhorov A, Nussbaum G, Franitza S, Cohen IR, Lider O. T cells respond to heat shock protein 60 via TLR2: activation of adhesion and inhibition of chemokine receptors. FASEB J. 2003;17(11):1567–9.

    CAS  PubMed  Google Scholar 

  71. Lin L, Kim SC, Wang Y, Gupta S, Davis B, Simon S, et al. HSP60 in heart failure: abnormal distribution and role in cardiac myocyte apoptosis. Am J Physiol. 2007;293:H2238–47.

    CAS  Google Scholar 

  72. Gao B, Tsan MF. Endotoxin contamination in recombinant human heat shock protein 70 (Hsp70) preparation is responsible for the induction of tumor necrosis factor alpha release by murine macrophages. J Biol Chem. 2003;278(1):174–9.

    Article  CAS  PubMed  Google Scholar 

  73. Frantz S, Kelly RA, Bourcier T. Role of TLR-2 in the activation of nuclear factor kB by oxidative stress in cardiac myocytes. J Biol Chem. 2001;276:5197–203.

    Article  CAS  PubMed  Google Scholar 

  74. Frantz S, Kobzik L, Kim YD, Fukazawa R, Medzhitov R, Lee RT, et al. Toll4 (TLR4) expression in cardiac myocytes in normal and failing myocardium. J Clin Investig. 1999;104:271–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Heiserman JP, Chen L, Kim BS, Kim SC, Tran AL, Siebenborn N, et al. TLR4 mutation and HSP60-induced cell death in adult mouse cardiac myocytes. Cell Stress Chaperones. 2015;20(3):527–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Feng Y, Chen H, Cai J, Zou L, Yan D, Xu G, et al. Cardiac RNA induces inflammatory responses in cardiomyocytes and immune cells via toll-like receptor 7 signaling. J Biol Chem. 2015;290(44):26688–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Knowlton AA, Kapadia S, Torre-Amione G, Durand JB, Bies R, Young J, et al. Differential expression of heat shock proteins in normal and failing human hearts. J Mol Cell Cardiol. 1998;30:811–8.

    Article  CAS  PubMed  Google Scholar 

  78. Wong SCY, Fukuchi M, Melnyk P, Rodger I, Giaid A. Induction of cyclooxygenase-2 and activation of nuclear factor-{kappa}B in myocardium of patients with congestive heart failure. Circulation. 1998;98(2):100–3.

    Article  CAS  PubMed  Google Scholar 

  79. Frantz S, Fraccarollo D, Wagner H, Behr TM, Jung P, Angermann CE, et al. Sustained activation of nuclear factor kappa B and activator protein 1 in chronic heart failure. Cardiovasc Res. 2003;57(3):749–56.

    Article  CAS  PubMed  Google Scholar 

  80. Wang Y, Chen L, Hagiwara N, Knowlton AA. Regulation of heat shock protein 60 and 72 expression in the failing heart. J Mol Cell Cardiol. 2010;48(2):360–6.

    Article  CAS  PubMed  Google Scholar 

  81. Habich C, Baumgart K, Kolb H, Burkart V. The receptor for heat shock protein 60 on macrophages is saturable, specific, and distinct from receptors for other heat shock proteins. J Immunol. 2002;168(2):569–76.

    Article  CAS  PubMed  Google Scholar 

  82. Liu Q, Wang J, Liang Q, Wang D, Luo Y, Li J, et al. Sparstolonin B attenuates hypoxia-reoxygenation-induced cardiomyocyte inflammation. Exp Biol Med. 2014;239(3):376–84.

    Article  CAS  Google Scholar 

  83. Bateman HR, Liang Q, Fan D, Rodriguez V, Lessner SM. Sparstolonin B inhibits pro-angiogenic functions and blocks cell cycle progression in endothelial cells. PLoS One. 2013;8(8):e70500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Matsushima S, Tsutsui H, Sadoshima J. Physiological and pathological functions of NADPH oxidases during myocardial ischemia/reperfusion. Trends Cardiovasc Med. 2014;24(5):202–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Simon F, Fernandez R. Early lipopolysaccharide-induced reactive oxygen species production evokes necrotic cell death in human umbilical vein endothelial cells. J Hypertens. 2009;27(6):1202–16.

    Article  CAS  PubMed  Google Scholar 

  86. Matsuno K, Iwata K, Matsumoto M, Katsuyama M, Cui W, Murata A, et al. NOX1/NADPH oxidase is involved in endotoxin-induced cardiomyocyte apoptosis. Free Radic Biol Med. 2012;53(9):1718–28.

    Article  CAS  PubMed  Google Scholar 

  87. Bae YS, Lee JH, Choi SH, Kim S, Almazan F, Witztum JL, et al. Macrophages generate reactive oxygen species in response to minimally oxidized low-density lipoprotein: toll-like receptor 4- and spleen tyrosine kinase-dependent activation of NADPH oxidase 2. Circ Res. 2009;104(2):210–8.

    Article  CAS  PubMed  Google Scholar 

  88. Shimamoto A, Chong AJ, Yada M, Shomura S, Takayama H, Fleisig AJ, et al. Inhibition of toll-like receptor 4 with Eritoran attenuates myocardial ischemia-reperfusion injury. Circulation. 2006;114(1_Suppl):I-270.

    Article  CAS  Google Scholar 

  89. Kim SC, Ghanem A, Stapel H, Tiemann K, Kneufermann P, Hoeft A, et al. Toll-like receptor 4 deficiency: smaller infarcts, but no gain in function. BMC Physiol. 2007;7:5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Zhao Y, McLaughlin D, Robinson E, Harvey AP, Hookham MB, Shah AM, et al. Nox2 NADPH oxidase promotes pathologic cardiac remodeling associated with doxorubicin chemotherapy. Cancer Res. 2010;70(22):9287–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mathur S, Walley KR, Wang Y, Indrambarya T, Boyd JH. Extracellular heat shock protein 70 induces cardiomyocyte inflammation and contractile dysfunction via TLR2. Circ J. 2011;75:2445–52.

    Article  CAS  PubMed  Google Scholar 

  92. de Graaf R, Kloppenburg G, Kitslaar P, Bruggeman CA, Stassen F. Human heat shock protein 60 stimulates vascular smooth muscle cell proliferation through toll-like receptors 2 and 4. Microbes Infect. 2006;8(7):1859–65.

    Article  PubMed  CAS  Google Scholar 

  93. Zanin-Zhorov A, Cahalon L, Tal G, Margalit R, Lider O, Cohen IR. Heat shock protein 60 enhances CD4+ CD25+ regulatory T cell function via innate TLR2 signaling. J Clin Investig. 2006;116(7):2022–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shintani Y, Kapoor A, Kaneko M, Smolenski RT, D’Acquisto F, Coppen SR, et al. TLR9 mediates cellular protection by modulating energy metabolism in cardiomyocytes and neurons. Proc Natl Acad Sci U S A. 2013;110(13):5109–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Xiao Q, Mandal K, Schett G, Mayr M, Wick G, Oberhollenzer F, et al. Association of serum-soluble heat shock protein 60 with carotid atherosclerosis: clinical significance determined in a follow-up study. Stroke. 2005;36(12):2571–6.

    Article  CAS  PubMed  Google Scholar 

  96. Hollestelle SCG, de Vries MR, van Keulen JK, Schoneveld AH, Vink A, Strijder CF, et al. Toll-like receptor 4 is involved in outward arterial remodeling. Circulation. 2004;109(3):393–8.

    Article  CAS  PubMed  Google Scholar 

  97. Vink A, Schoneveld AH, van der Meer JJ, van Middelaar BJ, Sluijter JPG, Smeets MB, et al. In vivo evidence for a role of toll-like receptor 4 in the development of intimal lesions. Circulation. 2002;106(15):1985–90.

    Article  CAS  PubMed  Google Scholar 

  98. Jung DY, Lee H, Jung B, Ock J, Lee M, Lee WH, et al. TLR4, but not TLR2, signals autoregulatory apoptosis of cultured microglia: a critical role of IFN-b as a decision maker. J Immunol. 2005;174:6467–76.

    Article  CAS  PubMed  Google Scholar 

  99. Giannessi D, Colotti C, Maltinti M, Del Rhy S, Prontera C, Turchi S, et al. Circulating heat shock proteins and inflammatory markers in patients with idiopathic left ventricular dysfunction: their relationships with myocardial and microvascular impairment. Cell Stress Chaperones. 2007;12:265–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Liu L, Wang Y, Cao Z, Wang M-M, Liu XM, Gao T, et al. Up-regulated TLR4 in cardiomyocytes exacerbates heart failure after long-term myocardial infarction. J Cell Mol Med. 2015;19(12):2728–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kim YS, Koh JM, Lee YS, Kim BJ, Lee SH, Lee KU, et al. Increased circulating heat shock protein 60 induced by menopause, stimulates apoptosis of osteoblast-lineage cells via up-regulation of toll-like receptors. Bone. 2009;45(1):68–76.

    Article  CAS  PubMed  Google Scholar 

  102. Cohen-Sfady M, Pevsner-Fischer M, Margalit R, Cohen IR. Heat shock protein 60, via MyD88 innate signaling, protects B cells from apoptosis, spontaneous and induced. J Immunol. 2009;183(2):890–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a RO1 HL079071 and a Merit Award (5101BX000839) from the US Department of Veterans’ Affairs, Office of Research and Development, Biomedical Laboratory Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne A. Knowlton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Knowlton, A.A. (2017). Paying for the Tolls: The High Cost of the Innate Immune System for the Cardiac Myocyte. In: Sattler, S., Kennedy-Lydon, T. (eds) The Immunology of Cardiovascular Homeostasis and Pathology. Advances in Experimental Medicine and Biology, vol 1003. Springer, Cham. https://doi.org/10.1007/978-3-319-57613-8_2

Download citation

Publish with us

Policies and ethics