Skip to main content

The Epigenetic Life Cycle of Epstein–Barr Virus

  • Chapter
  • First Online:
Book cover Epstein Barr Virus Volume 1

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 390))

Abstract

Ever since the discovery of Epstein–Barr virus (EBV) more than 50 years ago, this virus has been studied for its capacity to readily establish a latent infection, which is the prominent hallmark of this member of the herpesvirus family. EBV has become an important model for many aspects of herpesviral latency, but the molecular steps and mechanisms that lead to and promote viral latency have only emerged recently. It now appears that the virus exploits diverse facets of epigenetic gene regulation in the cellular host to establish a latent infection. Most viral genes are transcriptionally repressed, and viral chromatin is densely compacted during EBV’s latent phase, but latent infection is not a dead end. In order to escape from this phase, epigenetic silencing must be reverted efficiently and quickly. It appears that EBV has perfected a clever strategy to overcome transcriptional repression of its many lytic genes to initiate virus de novo synthesis within a few hours after induction of its lytic cycle. This review tries to summarize the known molecular mechanisms, the current models, concepts, and ideas underlying this viral strategy. This review also attempts to identify and address gaps in our current understanding of EBV’s epigenetic mechanisms within the infected cellular host.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfieri C, Birkenbach M, Kieff E (1991) Early events in Epstein-Barr virus infection of human B lymphocytes. Virology 181:595–608

    Article  CAS  PubMed  Google Scholar 

  • Altmann M, Hammerschmidt W (2005) Epstein-Barr virus provides a new paradigm: a requirement for the immediate inhibition of apoptosis. PLoS Biol 3:e404

    Article  PubMed Central  PubMed  Google Scholar 

  • Amon W, Binne UK, Bryant H, Jenkins PJ, Karstegl CE, Farrell PJ (2004) Lytic cycle gene regulation of Epstein-Barr virus. J Virol 78:13460–13469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arvey A, Tempera I, Tsai K, Chen HS, Tikhmyanova N, Klichinsky M, Leslie C, Lieberman PM (2012) An atlas of the Epstein-Barr virus transcriptome and epigenome reveals host-virus regulatory interactions. Cell Host Microbe 12:233–245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aubry V, Mure F, Mariame B, Deschamps T, Wyrwicz LS, Manet E, Gruffat H (2014) Epstein-Barr virus late gene transcription depends on the assembly of a virus-specific preinitiation complex. J Virol 88:12825–12838

    Article  PubMed Central  PubMed  Google Scholar 

  • Bechtel J, Grundhoff A, Ganem D (2005) RNAs in the virion of Kaposi’s sarcoma-associated herpesvirus. J Virol 79:10138–10146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bergbauer M, Kalla M, Schmeinck A, Gobel C, Rothbauer U, Eck S, Benet-Pages A, Strom TM, Hammerschmidt W (2010) CpG-methylation regulates a class of Epstein-Barr virus promoters. PLoS Pathog 6:e1001114

    Article  PubMed Central  PubMed  Google Scholar 

  • Bhende PM, Seaman WT, Delecluse HJ, Kenney SC (2004) The EBV lytic switch protein, Z, preferentially binds to and activates the methylated viral genome. Nat Genet 36:1099–1104

    Article  CAS  PubMed  Google Scholar 

  • Bresnahan WA, Shenk T (2000) A subset of viral transcripts packaged within human cytomegalovirus particles. Science 288:2373–2376

    Article  CAS  PubMed  Google Scholar 

  • Chiu YF, Sugden AU, Sugden B (2013) Epstein-Barr viral productive amplification reprograms nuclear architecture, DNA replication, and histone deposition. Cell Host Microbe 14:607–618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cliffe AR, Nash AA, Dutia BM (2009) Selective uptake of small RNA molecules in the virion of murine gammaherpesvirus 68. J Virol 83:2321–2326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Countryman J, Miller G (1985) Activation of expression of latent Epstein-Barr herpesvirus after gene transfer with a small cloned subfragment of heterogeneous viral DNA. Proc Natl Acad Sci U S A 82:4085–4089

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dickerson SJ, Xing Y, Robinson AR, Seaman WT, Gruffat H, Kenney SC (2009) Methylation-dependent binding of the Epstein-Barr virus BZLF1 protein to viral promoters. PLoS Pathog 5:e1000356

    Article  PubMed Central  PubMed  Google Scholar 

  • Farrell PJ, Rowe DT, Rooney CM, Kouzarides T (1989) Epstein-Barr virus BZLF1 trans-activator specifically binds to a consensus AP-1 site and is related to c-fos. EMBO J 8:127–132

    PubMed Central  CAS  PubMed  Google Scholar 

  • Feederle R, Kost M, Baumann M, Janz A, Drouet E, Hammerschmidt W, Delecluse HJ (2000) The Epstein-Barr virus lytic program is controlled by the co-operative functions of two transactivators. EMBO J 19:3080–3089

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fernandez AF, Rosales C, Lopez-Nieva P, Grana O, Ballestar E, Ropero S, Espada J, Melo SA, Lujambio A, Fraga MF, Pino I, Javierre B, Carmona FJ, Acquadro F, Steenbergen RD, Snijders PJ, Meijer CJ, Pineau P, Dejean A, Lloveras B, Capella G, Quer J, Buti M, Esteban JI, Allende H, Rodriguez-Frias F, Castellsague X, Minarovits J, Ponce J, Capello D, Gaidano G, Cigudosa JC, Gomez-Lopez G, Pisano DG, Valencia A, Piris MA, Bosch FX, Cahir-McFarland E, Kieff E, Esteller M (2009) The dynamic DNA methylomes of double-stranded DNA viruses associated with human cancer. Genome Res 19:438–451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fixman ED, Hayward GS, Hayward SD (1992) Trans-acting requirements for replication of Epstein-Barr virus ori-Lyt. J Virol 66:5030–5039

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gibson W, Roizman B (1971) Compartmentalization of spermine and spermidine in the herpes simplex virion. Proc Natl Acad Sci U S A 68:2818–2821

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Greijer AE, Dekkers CA, Middeldorp JM (2000) Human cytomegalovirus virions differentially incorporate viral and host cell RNA during the assembly process. J Virol 74:9078–9082

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gruffat H, Kadjouf F, Mariame B, Manet E (2012) The Epstein-Barr virus BcRF1 gene product is a TBP-like protein with an essential role in late gene expression. J Virol 86:6023–6032

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gunther T, Grundhoff A (2010) The epigenetic landscape of latent Kaposi sarcoma-associated herpesvirus genomes. PLoS Pathog 6:e1000935

    Article  PubMed Central  PubMed  Google Scholar 

  • Gustems M, Woellmer A, Rothbauer U, Eck SH, Wieland T, Lutter D, Hammerschmidt W (2014) c-Jun/c-Fos heterodimers regulate cellular genes via a newly identified class of methylated DNA sequence motifs. Nucleic Acids Res 42:3059–3072

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holdorf MM, Cooper SB, Yamamoto KR, Miranda JJ (2011) Occupancy of chromatin organizers in the Epstein-Barr virus genome. Virology 415:1–5

    Article  CAS  PubMed  Google Scholar 

  • Hurley EA, Thorley-Lawson DA (1988) B cell activation and the establishment of Epstein-Barr virus latency. J Exp Med 168:2059–2075

    Article  CAS  PubMed  Google Scholar 

  • Jochum S, Moosmann A, Lang S, Hammerschmidt W, Zeidler R (2012a) The EBV immunoevasins vIL-10 and BNLF2a protect newly infected B cells from immune recognition and elimination. PLoS Pathog 8:e1002704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jochum S, Ruiss R, Moosmann A, Hammerschmidt W, Zeidler R (2012b) RNAs in Epstein-Barr virions control early steps of infection. Proc Natl Acad Sci USA 109:E1396–E1404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johannsen E, Luftig M, Chase MR, Weicksel S, Cahir-McFarland E, Illanes D, Sarracino D, Kieff E (2004) Proteins of purified Epstein-Barr virus. Proc Natl Acad Sci USA 101:16286–16291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kalamvoki M, Du T, Roizman B (2014) Cells infected with herpes simplex virus 1 export to uninfected cells exosomes containing STING, viral mRNAs, and microRNAs. Proc Natl Acad Sci USA 111:E4991–E4996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kalla M, Gobel C, Hammerschmidt W (2012) The lytic phase of Epstein-Barr virus requires a viral genome with 5-methylcytosine residues in CpG sites. J Virol 86:447–458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kalla M, Hammerschmidt W (2012) Human B cells on their route to latent infection–early but transient expression of lytic genes of Epstein-Barr virus. Eur J Cell Biol 91:65–69

    Article  CAS  PubMed  Google Scholar 

  • Kalla M, Schmeinck A, Bergbauer M, Pich D, Hammerschmidt W (2010) AP-1 homolog BZLF1 of Epstein-Barr virus has two essential functions dependent on the epigenetic state of the viral genome. Proc Natl Acad Sci USA 107:850–855

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karlsson QH, Schelcher C, Verrall E, Petosa C, Sinclair AJ (2008) Methylated DNA recognition during the reversal of epigenetic silencing is regulated by cysteine and serine residues in the Epstein-Barr virus lytic switch protein. PLoS Pathog 4:e1000005

    Article  PubMed Central  PubMed  Google Scholar 

  • Kenney SC, Mertz JE (2014) Regulation of the latent-lytic switch in Epstein-Barr virus. Semin Cancer Biol 26:60–68

    Article  CAS  PubMed  Google Scholar 

  • Kintner C, Sugden B (1981) Conservation and progressive methylation of Epstein-Barr viral DNA sequences in transformed cells. J Virol 38:305–316

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lieberman PM (2013) Keeping it quiet: chromatin control of gammaherpesvirus latency. Nat Rev Microbiol 11:863–875

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meilinger D, Fellinger K, Bultmann S, Rothbauer U, Bonapace IM, Klinkert WE, Spada F, Leonhardt H (2009) Np95 interacts with de novo DNA methyltransferases, Dnmt3a and Dnmt3b, and mediates epigenetic silencing of the viral CMV promoter in embryonic stem cells. EMBO Rep 10:1259–1264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Minarovits J (2006) Epigenotypes of latent herpesvirus genomes. Curr Top Microbiol Immunol 310:61–80

    CAS  PubMed  Google Scholar 

  • Murata T, Tsurumi T (2014) Switching of EBV cycles between latent and lytic states. Rev Med Virol 24:142–153

    Article  CAS  PubMed  Google Scholar 

  • Paulson EJ, Speck SH (1999) Differential methylation of Epstein-Barr virus latency promoters facilitates viral persistence in healthy seropositive individuals. J Virol 73:9959–9968

    PubMed Central  CAS  PubMed  Google Scholar 

  • Petosa C, Morand P, Baudin F, Moulin M, Artero JB, Muller CW (2006) Structural basis of lytic cycle activation by the Epstein-Barr virus ZEBRA protein. Mol Cell 21:565–572

    Article  CAS  PubMed  Google Scholar 

  • Ramasubramanyan S, Osborn K, Flower K, Sinclair AJ (2012) Dynamic chromatin environment of key lytic cycle regulatory regions of the Epstein-Barr virus genome. J Virol 86:1809–1819

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reusch JA, Nawandar DM, Wright KL, Kenney SC, Mertz JE (2015) Cellular Differentiation Regulator BLIMP1 Induces Epstein-Barr Virus Lytic Reactivation in Epithelial and B Cells by Activating Transcription from both the R and Z Promoters. J Virol 89:1731–1743

    Article  PubMed Central  PubMed  Google Scholar 

  • Rottach A, Frauer C, Pichler G, Bonapace IM, Spada F, Leonhardt H (2010) The multi-domain protein Np95 connects DNA methylation and histone modification. Nucleic Acids Res 38:1796–1804

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schaefer BC, Strominger JL, Speck SH (1995) Redefining the Epstein-Barr virus-encoded nuclear antigen EBNA-1 gene promoter and transcription initiation site in group I Burkitt lymphoma cell lines. Proc Natl Acad Sci USA 92:10565–10569

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schlager S, Speck SH, Woisetschlager M (1996) Transcription of the Epstein-Barr virus nuclear antigen 1 (EBNA1) gene occurs before induction of the BCR2 (Cp) EBNA gene promoter during the initial stages of infection in B cells. J Virol 70:3561–3570

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schmeinck A (2011) Acquisition and loss of chromatin modifications during an Epstein-Barr Virus infection. Munich: Ludwig Maximilians-University, 1 p. Dissertation

    Google Scholar 

  • Sciortino MT, Suzuki M, Taddeo B, Roizman B (2001) RNAs extracted from herpes simplex virus 1 virions: apparent selectivity of viral but not cellular RNAs packaged in virions. J Virol 75:8105–8116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shannon-Lowe C, Baldwin G, Feederle R, Bell A, Rickinson A, Delecluse HJ (2005) Epstein-Barr virus-induced B-cell transformation: quantitating events from virus binding to cell outgrowth. J Gen Virol 86:3009–3019

    Article  CAS  PubMed  Google Scholar 

  • Shannon-Lowe CD, Neuhierl B, Baldwin G, Rickinson AB, Delecluse HJ (2006) Resting B cells as a transfer vehicle for Epstein-Barr virus infection of epithelial cells. Proc Natl Acad Sci USA 103:7065–7070

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sinclair AJ (2003) bZIP proteins of human gammaherpesviruses. J Gen Virol 84:1941–1949

    Article  CAS  PubMed  Google Scholar 

  • Takada K, Shimizu N, Sakuma S, Ono Y (1986) Transactivation of the latent Epstein-Barr virus (EBV) genome after transfection of the EBV DNA fragment. J Virol 57:1016–1022

    PubMed Central  CAS  PubMed  Google Scholar 

  • Taylor N, Flemington E, Kolman JL, Baumann RP, Speck SH, Miller G (1991) ZEBRA and a Fos-GCN4 chimeric protein differ in their DNA-binding specificities for sites in the Epstein-Barr virus BZLF1 promoter. J Virol 65:4033–4041

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tempera I, Klichinsky M, Lieberman PM (2011) EBV latency types adopt alternative chromatin conformations. PLoS Pathog 7:e1002180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tempera I, Wiedmer A, Dheekollu J, Lieberman PM (2010) CTCF prevents the epigenetic drift of EBV latency promoter Qp. PLoS Pathog 6:e1001048

    Article  PubMed Central  PubMed  Google Scholar 

  • Tierney R, Nagra J, Hutchings I, Shannon-Lowe C, Altmann M, Hammerschmidt W, Rickinson A, Bell A (2007) Epstein-Barr virus exploits BSAP/Pax5 to achieve the B-cell specificity of its growth-transforming program. J Virol 81:10092–10100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tierney RJ, Kirby HE, Nagra JK, Desmond J, Bell AI, Rickinson AB (2000) Methylation of transcription factor binding sites in the Epstein-Barr virus latent cycle promoter Wp coincides with promoter down-regulation during virus-induced B-cell transformation. J Virol 74:10468–10479

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Toth Z, Maglinte DT, Lee SH, Lee HR, Wong LY, Brulois KF, Lee S, Buckley JD, Laird PW, Marquez VE, Jung JU (2010) Epigenetic analysis of KSHV latent and lytic genomes. PLoS Pathog 6:e1001013

    Article  PubMed Central  PubMed  Google Scholar 

  • Tsai CL, Li HP, Lu YJ, Hsueh C, Liang Y, Chen CL, Tsao SW, Tse KP, Yu JS, Chang YS (2006) Activation of DNA methyltransferase 1 by EBV LMP1 Involves c-Jun NH(2)-terminal kinase signaling. Cancer Res 66:11668–11676

    Article  CAS  PubMed  Google Scholar 

  • Tsai K, Chan L, Gibeault R, Conn K, Dheekollu J, Domsic J, Marmorstein R, Schang LM, Lieberman PM (2014) Viral reprogramming of the Daxx histone H3.3 chaperone during early Epstein-Barr virus infection. J Virol 88:14350–14363

    Article  PubMed Central  PubMed  Google Scholar 

  • Walling DM, Flaitz CM, Nichols CM, Hudnall SD, Adler-Storthz K (2001) Persistent productive Epstein-Barr virus replication in normal epithelial cells in vivo. J Infect Dis 184:1499–1507

    Article  CAS  PubMed  Google Scholar 

  • Wen W, Iwakiri D, Yamamoto K, Maruo S, Kanda T, Takada K (2007) Epstein-Barr virus BZLF1 gene, a switch from latency to lytic infection, is expressed as an immediate-early gene after primary infection of B lymphocytes. J Virol 81:1037–1042

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Woellmer A, Arteaga-Salas JM, Hammerschmidt W (2012) BZLF1 governs CpG-methylated chromatin of Epstein-Barr virus reversing epigenetic repression. PLoS Pathog 8:e1002902

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Woellmer A, Hammerschmidt W (2013) Epstein-Barr virus and host cell methylation: regulation of latency, replication and virus reactivation. Curr Opin Virol 3:260–265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Woisetschlaeger M, Yandava CN, Furmanski LA, Strominger JL, Speck SH (1990) Promoter switching in Epstein-Barr virus during the initial stages of infection of B lymphocytes. Proc Natl Acad Sci USA 87:1725–1729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou J, Chau CM, Deng Z, Shiekhattar R, Spindler MP, Schepers A, Lieberman PM (2005) Cell cycle regulation of chromatin at an origin of DNA replication. EMBO J 24:1406–1417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This review is based on the works of many colleagues. I sincerely apologize to all scientists whose important contributions could not be cited here due to space limitations. I would like to thank Bill Sugden for reading the manuscript and his valuable suggestions. This review and work in my laboratory is supported by Institutional Intramural Grants, grants from the Deutsche Forschungsgemeinschaft SFBTRR36/TPA04, SFB1064/TPA13, SFB1054/TPB05, grants from German Centre for Infection Research (DZIF), and National Institutes of Health Grant CA70723.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Hammerschmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hammerschmidt, W. (2015). The Epigenetic Life Cycle of Epstein–Barr Virus. In: Münz, C. (eds) Epstein Barr Virus Volume 1. Current Topics in Microbiology and Immunology, vol 390. Springer, Cham. https://doi.org/10.1007/978-3-319-22822-8_6

Download citation

Publish with us

Policies and ethics