Skip to main content

Detection of PCNA Modifications in Saccharomyces cerevisiae

  • Protocol
  • First Online:
Book cover DNA Repair Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 920))

Abstract

PCNA modifications by members of the ubiquitin family are associated with a range of different transactions during replication of damaged and undamaged DNA. This chapter describes detailed protocols for the detection and isolation of ubiquitin and SUMO conjugates of PCNA from total budding yeast cell lysates, using Ni-NTA affinity chromatography under denaturing conditions. We describe approaches based on the purification of PCNA itself and on the isolation of total ubiquitin or SUMO conjugates. The chapter covers the construction of the appropriate strains, methods for the detection of modified PCNA, and the use of various DNA-damaging agents as well as mutants of PCNA and relevant conjugation enzymes to examine the cellular response to replication stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoeijmakers JH (2009) DNA damage, aging, and cancer. N Engl J Med 361:1475–1485

    Article  PubMed  CAS  Google Scholar 

  2. Lawrence C (1994) The RAD6 DNA repair pathway in Saccharomyces cerevisiae: what does it do, and how does it do it? Bioessays 16:253–258

    Article  PubMed  CAS  Google Scholar 

  3. Friedberg EC (2005) Suffering in silence: the tolerance of DNA damage. Nat Rev Mol Cell Biol 6:943–953

    Article  PubMed  CAS  Google Scholar 

  4. Branzei D, Foiani M (2010) Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol 11:208–219

    Article  PubMed  CAS  Google Scholar 

  5. Lehmann AR, Niimi A, Ogi T, Brown S, Sabbioneda S, Wing JF, Kannouche PL, Green CM (2007) Translesion synthesis: Y-family polymerases and the polymerase switch. DNA Repair 6:891–899

    Article  PubMed  CAS  Google Scholar 

  6. Waters LS, Minesinger BK, Wiltrout ME, D’Souza S, Woodruff RV, Walker GC (2009) Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance. Microbiol Mol Biol Rev 73:134–154

    Article  PubMed  CAS  Google Scholar 

  7. Ulrich HD (2011) Timing and spacing of ubiquitin-dependent DNA damage bypass. FEBS Lett 585(18):2861–2867

    Article  PubMed  CAS  Google Scholar 

  8. Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135–141

    Article  PubMed  CAS  Google Scholar 

  9. Stelter P, Ulrich HD (2003) Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425:188–191

    Article  PubMed  CAS  Google Scholar 

  10. Watanabe K, Tateishi S, Kawasuji M, Tsurimoto T, Inoue H, Yamaizumi M (2004) Rad18 guides polη to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO J 23:3886–3896

    Article  PubMed  CAS  Google Scholar 

  11. Bienko M, Green CM, Crosetto N, Rudolf F, Zapart G, Coull B, Kannouche P, Wider G, Peter M, Lehmann AR, Hofmann K, Dikic I (2005) Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 310:1821–1824

    Article  PubMed  CAS  Google Scholar 

  12. Guo C, Tang TS, Bienko M, Parker JL, Bielen AB, Sonoda E, Takeda S, Ulrich HD, Dikic I, Friedberg EC (2006) Ubiquitin-binding motifs in REV1 protein are required for its role in the tolerance of DNA damage. Mol Cell Biol 26:8892–8900

    Article  PubMed  CAS  Google Scholar 

  13. Plosky BS, Vidal AE, de Henestrosa AR, McLenigan MP, McDonald JP, Mead S, Woodgate R (2006) Controlling the subcellular localization of DNA polymerases ι and η via interactions with ubiquitin. EMBO J 25:2847–2855

    Article  PubMed  CAS  Google Scholar 

  14. Parker JL, Bielen AB, Dikic I, Ulrich HD (2007) Contributions of ubiquitin- and PCNA-binding domains to the activity of polymerase η in Saccharomyces cerevisiae. Nucleic Acids Res 35:881–889

    Article  PubMed  CAS  Google Scholar 

  15. Parker JL, Ulrich HD (2009) Mechanistic analysis of PCNA poly-ubiquitylation by the ubiquitin protein ligases Rad18 and Rad5. EMBO J 28:3657–3666

    Article  PubMed  CAS  Google Scholar 

  16. Davies AA, Huttner D, Daigaku Y, Chen S, Ulrich HD (2008) Activation of ubiquitin-dependent DNA damage bypass is mediated by Replication Protein A. Mol Cell 29:625–636

    Article  PubMed  CAS  Google Scholar 

  17. Niimi A, Brown S, Sabbioneda S, Kannouche PL, Scott A, Yasui A, Green CM, Lehmann AR (2008) Regulation of proliferating cell nuclear antigen ubiquitination in mammalian cells. Proc Natl Acad Sci U S A 105:16125–16130

    Article  PubMed  CAS  Google Scholar 

  18. Ulrich HD (2009) Regulating post-translational modifications of the eukaryotic replication clamp PCNA. DNA Repair 8:461–469

    Article  PubMed  CAS  Google Scholar 

  19. Parker JL, Bucceri A, Davies AA, Heidrich K, Windecker H, Ulrich HD (2008) SUMO modification of PCNA is controlled by DNA. EMBO J 27:2422–2431

    Article  PubMed  CAS  Google Scholar 

  20. Papouli E, Chen S, Davies AA, Huttner D, Krejci L, Sung P, Ulrich HD (2005) Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol Cell 19:123–133

    Article  PubMed  CAS  Google Scholar 

  21. Pfander B, Moldovan GL, Sacher M, Hoege C, Jentsch S (2005) SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436:428–433

    PubMed  CAS  Google Scholar 

  22. Moldovan GL, Pfander B, Jentsch S (2006) PCNA controls establishment of sister chromatid cohesion during S phase. Mol Cell 23:723–732

    Article  PubMed  CAS  Google Scholar 

  23. Parnas O, Zipin-Roitman A, Pfander B, Liefshitz B, Mazor Y, Ben-Aroya S, Jentsch S, Kupiec M (2010) Elg1, an alternative subunit of the RFC clamp loader, preferentially interacts with SUMOylated PCNA. EMBO J 29:2611–2622

    Article  PubMed  CAS  Google Scholar 

  24. Panse VG, Hardeland U, Werner T, Kuster B, Hurt E (2004) A proteome-wide approach identifies sumoylated substrate proteins in yeast. J Biol Chem 279:41346–41351

    Article  PubMed  CAS  Google Scholar 

  25. Vertegaal AC, Ogg SC, Jaffray E, Rodriguez MS, Hay RT, Andersen JS, Mann M, Lamond AI (2004) A proteomic study of SUMO-2 target proteins. J Biol Chem 279:33791–33798

    Article  PubMed  CAS  Google Scholar 

  26. Wohlschlegel JA, Johnson ES, Reed SI, Yates JR 3rd (2004) Global analysis of protein sumoylation in Saccharomyces cerevisiae. J Biol Chem 279:45662–45668

    Article  PubMed  CAS  Google Scholar 

  27. Zhao Y, Kwon SW, Anselmo A, Kaur K, White MA (2004) Broad spectrum identification of cellular small ubiquitin-related modifier (SUMO) substrate proteins. J Biol Chem 279:20999–21002

    Article  PubMed  CAS  Google Scholar 

  28. Zhou W, Ryan JJ, Zhou H (2004) Global analyses of sumoylated proteins in Saccharomyces cerevisiae. Induction of protein sumoylation by cellular stresses. J Biol Chem 279:32262–32268

    Article  PubMed  CAS  Google Scholar 

  29. Denison C, Rudner AD, Gerber SA, Bakalarski CE, Moazed D, Gygi SP (2005) A proteomic strategy for gaining insights into protein sumoylation in yeast. Mol Cell Proteomics 4:246–254

    Article  PubMed  CAS  Google Scholar 

  30. Hannich JT, Lewis A, Kroetz MB, Li SJ, Heide H, Emili A, Hochstrasser M (2005) Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J Biol Chem 280:4102–4110

    Article  PubMed  CAS  Google Scholar 

  31. Kirkpatrick DS, Weldon SF, Tsaprailis G, Liebler DC, Gandolfi AJ (2005) Proteomic identification of ubiquitinated proteins from human cells expressing His-tagged ubiquitin. Proteomics 5:2104–2111

    Article  PubMed  CAS  Google Scholar 

  32. Peng J, Cheng D (2005) Proteomic analysis of ubiquitin conjugates in yeast. Methods Enzymol 399:367–381

    Article  PubMed  CAS  Google Scholar 

  33. Rosas-Acosta G, Russell WK, Deyrieux A, Russell DH, Wilson VG (2005) A universal strategy for proteomic studies of SUMO and other ubiquitin-like modifiers. Mol Cell Proteomics 4:56–72

    PubMed  CAS  Google Scholar 

  34. Guthrie C, Fink GR (1991) Guide to yeast genetics and molecular biology, vol 194. Academic, San Diego

    Book  Google Scholar 

  35. Ayyagari R, Impellizzeri KJ, Yoder BL, Gary SL, Burgers PM (1995) A mutational analysis of the yeast proliferating cell nuclear antigen indicates distinct roles in DNA replication and DNA repair. Mol Cell Biol 15:4420–4429

    PubMed  CAS  Google Scholar 

  36. Gietz RD, Sugino A (1988) New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534

    Article  PubMed  CAS  Google Scholar 

  37. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  38. Windecker H, Ulrich HD (2007) Architecture and assembly of poly-SUMO chains on PCNA in Saccharomyces cerevisiae. J Mol Biol 376:221–231

    Article  PubMed  Google Scholar 

  39. Ulrich HD, Davies AA (2009) In vivo detection and characterization of sumoylation targets in Saccharomyces cerevisiae. Methods Mol Biol 497:81–103

    Article  PubMed  CAS  Google Scholar 

  40. Finley D, Ozkaynak E, Varshavsky A (1987) The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48:1035–1046

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank H. Windecker for contributing images of PCNA conjugates and P. Burgers for providing plasmid pBL243. Work in this lab is supported by Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helle D. Ulrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Davies, A.A., Ulrich, H.D. (2012). Detection of PCNA Modifications in Saccharomyces cerevisiae . In: Bjergbæk, L. (eds) DNA Repair Protocols. Methods in Molecular Biology, vol 920. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-998-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-998-3_36

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-997-6

  • Online ISBN: 978-1-61779-998-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics