Skip to main content

Development of ATP-Competitive mTOR Inhibitors

  • Protocol
  • First Online:
Book cover mTOR

Abstract

The mammalian Target of Rapamycin (mTOR)-mediated signaling transduction pathway has been observed to be deregulated in a wide variety of cancer and metabolic diseases. Despite extensive clinical development efforts, the well-known allosteric mTOR inhibitor rapamycin and structurally related rapalogs have failed to show significant single-agent antitumor efficacy in most types of cancer. This limited clinical success may be due to the inability of the rapalogs to maintain a complete blockade mTOR-mediated signaling. Therefore, numerous efforts have been initiated to develop ATP-competitive mTOR inhibitors that would block both mTORC1 and mTORC2 complex activity. Here, we describe our experimental approaches to develop Torin1 using a medium throughput cell-based screening assay and structure-guided drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sarbassov, D. D., Ali, S. M., Sabatini, D. M. (2005) Growing roles for the mTOR pathway. Curr. Opin. Cell Biol. 17, 596–603.

    Article  PubMed  CAS  Google Scholar 

  2. Sehgal, S. N.; Baker, H.; Vezina, C. (1975) Rapamycin (AY-22989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J. antibiotics (Tokyo), 28, 727–732.

    Google Scholar 

  3. Rao, R. D.; Buckner, J. C.; Sarkaria, J. N. (2004) mammalian Target of Rapamycin (mTOR) Inhibitors as Anti-Cancer Agents. Curr. Cancer Drug. Targets. 4, 621–635.

    Article  PubMed  CAS  Google Scholar 

  4. Guertin, D. A., Sabatini, D.M. (2007) Defining the role of mTOR in cancer. Cancer cell, 12, 9–22.

    Article  PubMed  CAS  Google Scholar 

  5. Molinolo, A. A., Hewitt, S. M., Amornphimoltham, P., Keelawat, S., Rangdaeng, S., Meneses, A. et al (2007) Dissecting the Akt/ mammalian target of rapamycin signaling network: emerging results from the head and neck cancer tissue array initiative. Clin Cancer Res, 13, 4964–4973.

    Article  PubMed  CAS  Google Scholar 

  6. Karbowniczek, M., Spittle, C.S., Morrison, T., Wu, H., Henske, E.P. (2008) mTOR is activated in the majority of malignant melanomas. J Invest Dermatol 128, 980–987.

    Article  PubMed  CAS  Google Scholar 

  7. Meric-Bernstam, F., Gonzalez-Angulo, A. M. (2009) Targeting the mTOR signaling network for cancer therapy. J Clin Oncol, 27, 2278–2287.

    Article  PubMed  CAS  Google Scholar 

  8. Thoreen, C. C., Kang, S. A., Chang, J. W., Liu, Q., Zhang, J., Gao, Y., et al. (2009) An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-insensitive functions of mTORC1. J Biol Chem. 284, 8023–8032.

    Article  PubMed  CAS  Google Scholar 

  9. Wan, X., Harkavy, B., Shen, N., Grohar, P., Helman, L. J. (2007) Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene, 26, 1932–1940.

    Article  PubMed  CAS  Google Scholar 

  10. Walker, E. H., Pacold, M. E., Perisic, O., Stephens, L., Hawkins, P. T., Wymann, M. P., et al. (2000) Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol. Cell, 6, 909–919.

    Article  PubMed  CAS  Google Scholar 

  11. Hayakawa, M., Kaizawa, H., Moritomo, H., Koizumi, T., Ohishi, T., Yamano, M., et al. (2007) Synthesis and biological evaluation of pyrido[3’,2’:4,5]furo[3,2-d]pyrimidine derivatives as novel PI3 kinase p110alpha inhibitors. Bioorg. Med. Chem. Lett., 17, 2438–2442.

    Article  PubMed  CAS  Google Scholar 

  12. Park, S., Chapuis, N., Bardet, V., Tamburini, J., Gallay, N., Willems, L., et al. (2008) PI-103, a dual inhibitor of class IA phosphatidylinositide 3-kinase and mTOR, has antileukemic activity in AML. Leukemia, 22, 1698–1706.

    Article  PubMed  CAS  Google Scholar 

  13. García-Martínez, J. M., Moran, J., Clarke, R. G., Gray, A., Cosulich, S. C., Chresta, C. M., et al. (2009) Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochem J, 421, 29–42.

    Article  PubMed  Google Scholar 

  14. Yu, K., Toral-Barza, L., Shi, C., Zhang, W. G., Lucas, J., Shor, B., et al. (2009) Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res. 69, 6232–6240.

    Article  PubMed  CAS  Google Scholar 

  15. Liu, Q., Thoreen, C. C., Wang, J., Sabatini, D. M., Gray, N. S. (2009) mTOR medicated anti-cancer drug discovery. Drug. Discov. Today: Therapeutic Strategies. 6, 47–55.

    Article  CAS  Google Scholar 

  16. Ding, S., Gray, N. S., Wu, X., Ding, Q., Schultz, P. G. (2002) A combinatorial scaf-fold approach toward kinase-directed heterocycle libraries. J. Am. Chem. Soc., 124, 1594–1596.

    Article  PubMed  CAS  Google Scholar 

  17. Liu, Q., Chang, J., Wang, J., Kang, S. A., Thoreen, C.C., Markhard, A., Hur, W., Zhang, J., Sim, T., Sabatini, D. M., Gray, N. S. (2010) Discovery of 1-(4-(4-propionylpiperazin-1-yl)-3-(trifluoromethyl)phenyl)-9-(quinolin-3-yl)benzo[h][1,6]naphthyridin-2(1 H)-one as a highly potent, selective mTOR inhibitor for the treatment of cancer. J. Med. Chem. DOI: 10.1021/jm101144f

  18. Guertin, D. A., Stevens, D. M., Thoreen, C. C., Burds, A. A., Kalaany, N. Y., Moffat, J., Brown, M., Fitzgerald, K. J., Sabatini, D. M. (2006) Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev. Cell, 11, 859–871

    Article  PubMed  CAS  Google Scholar 

  19. Trott, O., Olson, A. J. (2010) Autodock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 31, 455–461.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Life Technologies Corporation for SelectScreen® Kinase Profiling Service and Ambit Bioscience for performing KinomeScanTM profiling. We also thank SAI Advantium Pharma Limited Inc. (India) for the pharmacokinetic study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathanael S. Gray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Liu, Q. et al. (2012). Development of ATP-Competitive mTOR Inhibitors. In: Weichhart, T. (eds) mTOR. Methods in Molecular Biology, vol 821. Humana Press. https://doi.org/10.1007/978-1-61779-430-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-430-8_29

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-429-2

  • Online ISBN: 978-1-61779-430-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics