Skip to main content

Advanced Methods for High-Throughput Microscopy Screening of Genetically Modified Yeast Libraries

  • Protocol
  • First Online:
Network Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 781))

Abstract

High-throughput methodologies have created new opportunities for studying biological phenomena in an unbiased manner. Using automated cell manipulations and microscopy platforms, it is now possible to easily screen entire genomes for genes that affect any cellular process that can be visualized. The onset of these methodologies promises that the near future will bring with it a more comprehensive and richly integrated understanding of complex and dynamic cellular structures and processes. In this review, we describe how to couple systematic genetic tools in the budding yeast Saccharomyces cerevisiae alongside robotic visualization systems to attack biological questions. The combination of high-throughput microscopy screens with the powerful, yet simple, yeast model system for studying the eukaryotic cell should pioneer new knowledge in all areas of cell biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farquhar, M. G., and Palade, G. E. (1998) The Golgi apparatus: 100 years of progress and controversy, Trends Cell Biol 8, 2–10.

    Article  PubMed  CAS  Google Scholar 

  2. Droscher, A. (1998) Camillo Golgi and the discovery of the Golgi apparatus, Histochem Cell Biol 109, 425–430.

    Article  PubMed  CAS  Google Scholar 

  3. Rieder, C. L., and Khodjakov, A. (2003) Mitosis through the microscope: advances in seeing inside live dividing cells, Science 300, 91–96.

    Article  PubMed  CAS  Google Scholar 

  4. Tong, A. H. Y., and Boone, C. (2007) High-Throughput Strain Construction and Systematic Synthetic Lethal Screening in Saccharomyces cerevisiae, in Methods in Microbiology (Stansfield, I., and Stark, M. J., Eds.) Second ed., pp 369–386, Elsevier Academic Press.

    Google Scholar 

  5. Tong, A. H., Evangelista, M., Parsons, A. B., Xu, H., Bader, G. D., Page, N., Robinson, M., Raghibizadeh, S., Hogue, C. W., Bussey, H., Andrews, B., Tyers, M., and Boone, C. (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants, Science 294, 2364–2368.

    Article  PubMed  CAS  Google Scholar 

  6. Tong, A. H., and Boone, C. (2006) Synthetic genetic array analysis in Saccharomyces cerevisiae, Methods Mol Biol 313, 171–192.

    PubMed  CAS  Google Scholar 

  7. Shaner, N. C., Steinbach, P. A., and Tsien, R. Y. (2005) A guide to choosing fluorescent ­proteins, Nat Methods 2, 905–909.

    Article  PubMed  CAS  Google Scholar 

  8. Shaner, N. C., Patterson, G. H., and Davidson, M. W. (2007) Advances in fluorescent protein technology, J Cell Sci 120, 4247–4260.

    Article  PubMed  CAS  Google Scholar 

  9. Frommer, W. B., Davidson, M. W., and Campbell, R. E. (2009) Genetically encoded biosensors based on engineered fluorescent proteins, Chem Soc Rev 38, 2833–2841.

    Article  PubMed  CAS  Google Scholar 

  10. Morris, M. C. (2010) Fluorescent biosensors of intracellular targets from genetically encoded reporters to modular polypeptide probes, Cell Biochem Biophys 56, 19–37.

    Article  PubMed  CAS  Google Scholar 

  11. Ibraheem, A., and Campbell, R. E. (2010) Designs and applications of fluorescent ­protein-based biosensors, Curr Opin Chem Biol 14, 30–36.

    Article  PubMed  CAS  Google Scholar 

  12. Wang, H., Nakata, E., and Hamachi, I. (2009) Recent progress in strategies for the creation of protein-based fluorescent biosensors, Chembiochem 10, 2560–2577.

    Article  PubMed  CAS  Google Scholar 

  13. Miyawaki, A., Llopis, J., Heim, R., McCaffery, J. M., Adams, J. A., Ikura, M., and Tsien, R. Y. (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin, Nature 388, 882–887.

    Article  PubMed  CAS  Google Scholar 

  14. Paroutis, P., Touret, N., and Grinstein, S. (2004) The pH of the secretory pathway: measurement, determinants, and regulation, Physiology (Bethesda) 19, 207–215.

    CAS  Google Scholar 

  15. Schuldiner, M., Collins, S. R., Weissman, J. S., and Krogan, N. J. (2006) Quantitative genetic analysis in Saccharomyces cerevisiae using epistatic miniarray profiles (E-MAPs) and its application to chromatin functions, Methods 40, 344–352.

    Article  PubMed  CAS  Google Scholar 

  16. Vizeacoumar, F. J., Chong, Y., Boone, C., and Andrews, B. J. (2009) A picture is worth a thousand words: genomics to phenomics in the yeast Saccharomyces cerevisiae, FEBS Lett 583, 1656–1661.

    Article  PubMed  CAS  Google Scholar 

  17. Gough, A. H., and Johnston, P. A. (2007) Requirements, features, and performance of high content screening platforms, Methods Mol Biol 356, 41–61.

    PubMed  Google Scholar 

  18. Pepperkok, R., and Ellenberg, J. (2006) High-throughput fluorescence microscopy for systems biology, Nat Rev Mol Cell Biol 7, 690–696.

    Article  PubMed  CAS  Google Scholar 

  19. Megason, S. G., and Fraser, S. E. (2007) Imaging in systems biology, Cell 130, 784–795.

    Article  PubMed  CAS  Google Scholar 

  20. Araki, Y., Wu, H., Kitagaki, H., Akao, T., Takagi, H., and Shimoi, H. (2009) Ethanol stress stimulates the Ca2+-mediated calcineurin/Crz1 pathway in Saccharomyces cerevisiae, J Biosci Bioeng 107, 1–6.

    Article  PubMed  CAS  Google Scholar 

  21. Cai, L., Dalal, C. K., and Elowitz, M. B. (2008) Frequency-modulated nuclear localization bursts coordinate gene regulation, Nature 455, 485–490.

    Article  PubMed  CAS  Google Scholar 

  22. Lim, R. P., Misra, A., Wu, Z., and Thanabalu, T. (2007) Analysis of conformational changes in WASP using a split YFP, Biochem Biophys Res Commun 362, 1085–1089.

    Article  PubMed  CAS  Google Scholar 

  23. Anand, V. C., Daboussi, L., Lorenz, T. C., and Payne, G. S. (2009) Genome-wide analysis of AP-3-dependent protein transport in yeast, Mol Biol Cell 20, 1592–1604.

    Article  PubMed  CAS  Google Scholar 

  24. Kanki, T., Wang, K., Baba, M., Bartholomew, C. R., Lynch-Day, M. A., Du, Z., Geng, J., Mao, K., Yang, Z., Yen, W. L., and Klionsky, D. J. (2009) A genomic screen for yeast mutants defective in selective mitochondria autophagy, Mol Biol Cell 20, 4730–4738.

    Article  PubMed  CAS  Google Scholar 

  25. Jonikas, M. C., Collins, S. R., Denic, V., Oh, E., Quan, E. M., Schmid, V., Weibezahn, J., Schwappach, B., Walter, P., Weissman, J. S., and Schuldiner, M. (2009) Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum, Science 323, 1693–1697.

    Article  PubMed  CAS  Google Scholar 

  26. Merksamer, P. I., Trusina, A., and Papa, F. R. (2008) Real-time redox measurements during endoplasmic reticulum stress reveal interlinked protein folding functions, Cell 135, 933–947.

    Article  PubMed  CAS  Google Scholar 

  27. Giaever, G., Chu, A. M., Ni, L., Connelly, C., Riles, L., Veronneau, S., Dow, S., Lucau-Danila, A., Anderson, K., Andre, B., Arkin, A. P., Astromoff, A., El-Bakkoury, M., Bangham, R., Benito, R., Brachat, S., Campanaro, S., Curtiss, M., Davis, K., Deutschbauer, A., Entian, K. D., Flaherty, P., Foury, F., Garfinkel, D. J., Gerstein, M., Gotte, D., Guldener, U., Hegemann, J. H., Hempel, S., Herman, Z., Jaramillo, D. F., Kelly, D. E., Kelly, S. L., Kotter, P., LaBonte, D., Lamb, D. C., Lan, N., Liang, H., Liao, H., Liu, L., Luo, C., Lussier, M., Mao, R., Menard, P., Ooi, S. L., Revuelta, J. L., Roberts, C. J., Rose, M., Ross-Macdonald, P., Scherens, B., Schimmack, G., Shafer, B., Shoemaker, D. D., Sookhai-Mahadeo, S., Storms, R. K., Strathern, J. N., Valle, G., Voet, M., Volckaert, G., Wang, C. Y., Ward, T. R., Wilhelmy, J., Winzeler, E. A., Yang, Y., Yen, G., Youngman, E., Yu, K., Bussey, H., Boeke, J. D., Snyder, M., Philippsen, P., Davis, R. W., and Johnston, M. (2002) Functional profiling of the Saccharomyces cerevisiae genome, Nature 418, 387–391.

    Article  PubMed  CAS  Google Scholar 

  28. Breslow, D. K., Cameron, D. M., Collins, S. R., Schuldiner, M., Stewart-Ornstein, J., Newman, H. W., Braun, S., Madhani, H. D., Krogan, N. J., and Weissman, J. S. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome, Nat Methods 5, 711–718.

    Article  PubMed  CAS  Google Scholar 

  29. Ben-Aroya, S., Coombes, C., Kwok, T., O’Donnell, K. A., Boeke, J. D., and Hieter, P. (2008) Toward a comprehensive temperature-sensitive mutant repository of the essential genes of Saccharomyces cerevisiae, Mol Cell 30, 248–258.

    Article  PubMed  CAS  Google Scholar 

  30. Mnaimneh, S., Davierwala, A. P., Haynes, J., Moffat, J., Peng, W. T., Zhang, W., Yang, X., Pootoolal, J., Chua, G., Lopez, A., Trochesset, M., Morse, D., Krogan, N. J., Hiley, S. L., Li, Z., Morris, Q., Grigull, J., Mitsakakis, N., Roberts, C. J., Greenblatt, J. F., Boone, C., Kaiser, C. A., Andrews, B. J., and Hughes, T. R. (2004) Exploration of essential gene functions via titratable promoter alleles, Cell 118, 31–44.

    Article  PubMed  CAS  Google Scholar 

  31. Sopko, R., Huang, D., Preston, N., Chua, G., Papp, B., Kafadar, K., Snyder, M., Oliver, S. G., Cyert, M., Hughes, T. R., Boone, C., and Andrews, B. (2006) Mapping pathways and phenotypes by systematic gene overexpression, Mol Cell 21, 319–330.

    Article  PubMed  CAS  Google Scholar 

  32. Huh, W. K., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W., Weissman, J. S., and O’Shea, E. K. (2003) Global analysis of protein localization in budding yeast, Nature 425, 686–691.

    Article  PubMed  CAS  Google Scholar 

  33. Tudisca, V., Recouvreux, V., Moreno, S., Boy-Marcotte, E., Jacquet, M., and Portela, P. (2010) Differential localization to cytoplasm, nucleus or P-bodies of yeast PKA subunits under different growth conditions, Eur J Cell Biol 89, 339–348.

    Article  PubMed  CAS  Google Scholar 

  34. Sheth, U., and Parker, R. (2003) Decapping and decay of messenger RNA occur in cytoplasmic processing bodies, Science 300, 805–808.

    Article  PubMed  CAS  Google Scholar 

  35. Brengues, M., and Parker, R. (2007) Accumulation of polyadenylated mRNA, Pab1p, eIF4E, and eIF4G with P-bodies in Saccharomyces cerevisiae, Mol Biol Cell 18, 2592–2602.

    Article  PubMed  CAS  Google Scholar 

  36. Kulkarni, M., Ozgur, S., and Stoecklin, G. (2010) On track with P-bodies, Biochem Soc Trans 38, 242–251.

    Article  PubMed  CAS  Google Scholar 

  37. Buchan, J. R., Muhlrad, D., and Parker, R. (2008) P bodies promote stress granule assembly in Saccharomyces cerevisiae, J Cell Biol 183, 441–455.

    Article  PubMed  CAS  Google Scholar 

  38. Kaganovich, D., Kopito, R., and Frydman, J. (2008) Misfolded proteins partition between two distinct quality control compartments, Nature 454, 1088–1095.

    Article  PubMed  CAS  Google Scholar 

  39. Xie, Z., and Klionsky, D. J. (2007) Autophagosome formation: core machinery and adaptations, Nat Cell Biol 9, 1102–1109.

    Article  PubMed  CAS  Google Scholar 

  40. Ryan, C., Greene, D., Cagney, G., and Cunningham, P. (2010) Missing value imputation for epistatic MAPs, BMC Bioinformatics 11, 197.

    Article  PubMed  Google Scholar 

  41. Fiedler, D., Braberg, H., Mehta, M., Chechik, G., Cagney, G., Mukherjee, P., Silva, A. C., Shales, M., Collins, S. R., van Wageningen, S., Kemmeren, P., Holstege, F. C., Weissman, J. S., Keogh, M. C., Koller, D., Shokat, K. M., and Krogan, N. J. (2009) Functional organization of the S. cerevisiae phosphorylation network, Cell 136, 952–963.

    Article  PubMed  CAS  Google Scholar 

  42. Dixon, S. J., Costanzo, M., Baryshnikova, A., Andrews, B., and Boone, C. (2009) Systematic mapping of genetic interaction networks, Annu Rev Genet 43, 601–625.

    Article  PubMed  CAS  Google Scholar 

  43. Boone, C., Bussey, H., and Andrews, B. J. (2007) Exploring genetic interactions and networks with yeast, Nat Rev Genet 8, 437–449.

    Article  PubMed  CAS  Google Scholar 

  44. Beltrao, P., Cagney, G., and Krogan, N. J. (2010) Quantitative genetic interactions reveal biological modularity, Cell 141, 739–745.

    Article  PubMed  CAS  Google Scholar 

  45. Schuldiner, M., Collins, S. R., Thompson, N. J., Denic, V., Bhamidipati, A., Punna, T., Ihmels, J., Andrews, B., Boone, C., Greenblatt, J. F., Weissman, J. S., and Krogan, N. J. (2005) Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile, Cell 123, 507–519.

    Article  PubMed  CAS  Google Scholar 

  46. Collins, S. R., Miller, K. M., Maas, N. L., Roguev, A., Fillingham, J., Chu, C. S., Schuldiner, M., Gebbia, M., Recht, J., Shales, M., Ding, H., Xu, H., Han, J., Ingvarsdottir, K., Cheng, B., Andrews, B., Boone, C., Berger, S. L., Hieter, P., Zhang, Z., Brown, G. W., Ingles, C. J., Emili, A., Allis, C. D., Toczyski, D. P., Weissman, J. S., Greenblatt, J. F., and Krogan, N. J. (2007) Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map, Nature 446, 806–810.

    Article  PubMed  CAS  Google Scholar 

  47. Breker, M., and Schuldiner, M. (2009) Explorations in topology-delving underneath the surface of genetic interaction maps, Mol Biosyst 5, 1473–1481.

    Article  PubMed  CAS  Google Scholar 

  48. Brachmann, C. B., Davies, A., Cost, G. J., Caputo, E., Li, J., Hieter, P., and Boeke, J. D. (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications, Yeast 14, 115–132.

    Article  PubMed  CAS  Google Scholar 

  49. Sychrova, H., and Chevallier, M. R. (1993) Cloning and sequencing of the Saccharomyces cerevisiae gene LYP1 coding for a lysine-specific permease, Yeast 9, 771–782.

    Article  PubMed  CAS  Google Scholar 

  50. Day, R. N., and Davidson, M. W. (2009) The fluorescent protein palette: tools for cellular imaging, Chem Soc Rev 38, 2887–2921.

    Article  PubMed  CAS  Google Scholar 

  51. Sprague, G. F., Jr. (2004) Assay of Yeast Mating Reaction, in Guide to Yeast Genetics and Molecular and Cell Biology (Guthrie, C., and Fink, G. R., Eds.), pp 77–93, Elsevier Academic Press, San Diego.

    Google Scholar 

  52. Sheff, M. A., and Thorn, K. S. (2004) Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae, Yeast 21, 661–670.

    Article  PubMed  CAS  Google Scholar 

  53. DeLuna, A., Vetsigian, K., Shoresh, N., Hegreness, M., Colon-Gonzalez, M., Chao, S., and Kishony, R. (2008) Exposing the fitness contribution of duplicated genes, Nat Genet 40, 676–681.

    Article  PubMed  CAS  Google Scholar 

  54. Hughes, T. R., Roberts, C. J., Dai, H., Jones, A. R., Meyer, M. R., Slade, D., Burchard, J., Dow, S., Ward, T. R., Kidd, M. J., Friend, S. H., and Marton, M. J. (2000) Widespread aneuploidy revealed by DNA microarray expression profiling, Nat Genet 25, 333–337.

    Article  PubMed  CAS  Google Scholar 

  55. Voth, W. P., Jiang, Y. W., and Stillman, D. J. (2003) New ‘marker swap’ plasmids for converting selectable markers on budding yeast gene disruptions and plasmids, Yeast 20, 985–993.

    Article  PubMed  CAS  Google Scholar 

  56. Collins, S. R., Schuldiner, M., Krogan, N. J., and Weissman, J. S. (2006) A strategy for extracting and analyzing large-scale quantitative epistatic interaction data, Genome Biol in press.

    Google Scholar 

  57. Ho, C. H., Magtanong, L., Barker, S. L., Gresham, D., Nishimura, S., Natarajan, P., Koh, J. L., Porter, J., Gray, C. A., Andersen, R. J., Giaever, G., Nislow, C., Andrews, B., Botstein, D., Graham, T. R., Yoshida, M., and Boone, C. (2009) A molecular barcoded yeast ORF library enables mode-of-action analysis of bioactive compounds, Nat Biotechnol 27, 369–377.

    Article  PubMed  CAS  Google Scholar 

  58. Jones, G. M., Stalker, J., Humphray, S., West, A., Cox, T., Rogers, J., Dunham, I., and Prelich, G. (2008) A systematic library for comprehensive overexpression screens in Saccharomyces cerevisiae, Nat Methods 5, 239–241.

    Article  PubMed  CAS  Google Scholar 

  59. Kitada, K., Yamaguchi, E., and Arisawa, M. (1995) Cloning of the Candida glabrata TRP1 and HIS3 genes, and construction of their disruptant strains by sequential integrative transformation, Gene 165, 203–206.

    Article  PubMed  CAS  Google Scholar 

  60. Longtine, M. S., McKenzie, A., 3rd, Demarini, D. J., Shah, N. G., Wach, A., Brachat, A., Philippsen, P., and Pringle, J. R. (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae, Yeast 14, 953–961.

    Article  PubMed  CAS  Google Scholar 

  61. Goldstein, A. L., and McCusker, J. H. (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae, Yeast 15, 1541–1553.

    Article  PubMed  CAS  Google Scholar 

  62. Janke, C., Magiera, M. M., Rathfelder, N., Taxis, C., Reber, S., Maekawa, H., Moreno-Borchart, A., Doenges, G., Schwob, E., Schiebel, E., and Knop, M. (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes, Yeast 21, 947–962.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Yifat Cohen and Maya Schuldiner were funded by the Legacy Heritage Biomedical Science Partnership Program of the Israel Science Foundation (grant No. 1995/08). Yifat Cohen is a ­recipient of the Karen Siem Fellowship for Women in Science. We would like to thank Michal Breker and Anat Shemesh for help with setting up the protocols and robotics to enable high-throughput microscopy in our laboratory. We would like to thank Moshe Gabso, Ayelet Rahat, and all the members of the Schuldiner ­laboratory for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maya Schuldiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cohen, Y., Schuldiner, M. (2011). Advanced Methods for High-Throughput Microscopy Screening of Genetically Modified Yeast Libraries. In: Cagney, G., Emili, A. (eds) Network Biology. Methods in Molecular Biology, vol 781. Humana Press. https://doi.org/10.1007/978-1-61779-276-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-276-2_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-275-5

  • Online ISBN: 978-1-61779-276-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics