Skip to main content

Comparative Poly(A)+ RNA Interactome Capture of RNA Surveillance Mutants

  • Protocol
  • First Online:
Book cover The Eukaryotic RNA Exosome

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2062))

Abstract

RNA exosome complexes degrade many different RNA substrates. Substrate selection and targeting to the exosome complex rely on cofactors, which bind to the substrate RNA, recruit the exosome complex, and help to remodel the associated ribonucleoprotein particle to facilitate RNA degradation. These cofactors are RNA-binding proteins, but their interaction with RNA may be very transient because the RNAs they are bound to are rapidly turned over by the exosome complex. Hence, the cofactors involved in the degradation of many exosome substrates are unknown. Here, we describe comparative poly(A)+ RNA interactome capture as a method to screen for novel RNA-binding proteins involved in exosome-dependent RNA decay.

For this, we compare the poly(A)+ RNA interactome of wild-type cells to that of RNA surveillance mutants, where the decay of exosome substrates is compromised and occupancy of exosome cofactors on RNA is strongly increased. More specifically, protein–RNA complexes in wild-type and mutant cells are UV–cross-linked in vivo after labeling with the photoactivatable nucleoside analogue 4-thiouracil. Following cell lysis, protein–RNA complexes are selected on oligo d(T) beads, subjected to stringent washes, and eluted in a low salt buffer. After RNase digestion of cross-linked RNA, RNA-binding proteins that are enriched in the mutant samples are identified by quantitative mass spectrometry. Here, we quantitatively compare the RNA–protein interactomes of wild-type and rrp6Δ cells to selectively determine cofactors of the nuclear RNA exosome complex in fission yeast. With minor modifications, the comparative interactome approach can easily be adapted to study a range of different RNA-dependent processes in various cellular systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 01 December 2020

    A correction has been published.

References

  1. Kilchert C, Wittmann S, Vasiljeva L (2016) The regulation and functions of the nuclear RNA exosome complex. Nat Rev Mol Cell Biol 17(4):227–239

    Article  CAS  PubMed  Google Scholar 

  2. Zinder JC, Lima CD (2017) Targeting RNA for processing or destruction by the eukaryotic RNA exosome and its cofactors. Genes Dev 31(2):88–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mistry DS, Chen Y, Sen GL (2012) Progenitor function in self-renewing human epidermis is maintained by the exosome. Cell Stem Cell 11(1):127–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McIver SC et al (2016) Exosome complex orchestrates developmental signaling to balance proliferation and differentiation during erythropoiesis. Elife 5. https://doi.org/10.7554/eLife.17877

  5. McIver SC et al (2014) The exosome complex establishes a barricade to erythroid maturation. Blood 124(14):2285–2297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harigaya Y et al (2006) Selective elimination of messenger RNA prevents an incidence of untimely meiosis. Nature 442(7098):45–50

    Article  CAS  PubMed  Google Scholar 

  7. Kilchert C et al (2015) Regulation of mRNA levels by decay-promoting introns that recruit the exosome specificity factor Mmi1. Cell Rep 13(11):1–12

    Article  Google Scholar 

  8. Lee NN et al (2013) Mtr4-like protein coordinates nuclear RNA processing for heterochromatin assembly and for telomere maintenance. Cell 155(5):1061–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Egan ED, Braun CR, Gygi SP, Moazed D (2014) Post-transcriptional regulation of meiotic genes by a nuclear RNA silencing complex. RNA 20(6):867–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhou Y et al (2015) The fission yeast MTREC complex targets CUTs and unspliced pre-mRNAs to the nuclear exosome. Nat Commun 6:7050

    Article  PubMed  Google Scholar 

  11. Shah S, Wittmann S, Kilchert C, Vasiljeva L (2014) lncRNA recruits RNAi and the exosome to dynamically regulate pho1 expression in response to phosphate levels in fission yeast. Genes Dev 28(3):231–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yamashita A et al (2012) Hexanucleotide motifs mediate recruitment of the RNA elimination machinery to silent meiotic genes. Open Biol 2(3):120014

    Article  PubMed  PubMed Central  Google Scholar 

  13. Castello A et al (2012) Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149(6):1393–1406

    Article  CAS  PubMed  Google Scholar 

  14. Castello A et al (2013) System-wide identification of RNA-binding proteins by interactome capture. Nat Protoc 8(3):491–500

    Article  CAS  PubMed  Google Scholar 

  15. Beckmann BM et al (2015) The RNA-binding proteomes from yeast to man harbour conserved enigmRBPs. Nat Commun 6:10127

    Article  CAS  PubMed  Google Scholar 

  16. Baltz AG et al (2012) The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol Cell 46(5):674–690

    Article  CAS  PubMed  Google Scholar 

  17. Sysoev VO et al (2016) Global changes of the RNA-bound proteome during the maternal-to-zygotic transition in Drosophila. Nat Commun 7:12128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11(12):2301–2319

    Article  CAS  PubMed  Google Scholar 

  19. Tyanova S et al (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13(9):731–740

    Article  CAS  PubMed  Google Scholar 

  20. Rogell B et al (2017) Specific RNP capture with antisense LNA/DNA mixmers. RNA 23(8):1290–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dölken L et al (2008) High-resolution gene expression profiling for simultaneous kinetic parameter analysis of RNA synthesis and decay. RNA 14(9):1959–1972

    Article  PubMed  PubMed Central  Google Scholar 

  22. van Nues R et al (2017) Kinetic CRAC uncovers a role for Nab3 in determining gene expression profiles during stress. Nat Commun 8(1):12

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a Wellcome Trust Senior Research fellowship to L.V. (WT106994MA) and a Medical Research Council career development award to A.C. (MR/L019434/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidia Vasiljeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kilchert, C., Hester, S., Castello, A., Mohammed, S., Vasiljeva, L. (2020). Comparative Poly(A)+ RNA Interactome Capture of RNA Surveillance Mutants. In: LaCava, J., Vaňáčová, Š. (eds) The Eukaryotic RNA Exosome. Methods in Molecular Biology, vol 2062. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9822-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9822-7_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9821-0

  • Online ISBN: 978-1-4939-9822-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics