Skip to main content

In Vitro Assays to Measure the Membrane Tethering and Lipid Transport Activities of the Extended Synaptotagmins

  • Protocol
  • First Online:
Book cover Intracellular Lipid Transport

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1949))

Abstract

The three extended synaptotagmins (E-Syts) are endoplasmic reticulum (ER)-localized membrane proteins that mediate tethering of the ER to the plasma membrane (PM) via C2 domain-dependent interactions regulated by Ca2+ and/or PI(4,5)P2. The E-Syts also contains a Synaptotagmin-like Mitochondrial lipid-binding Protein (SMP) domain, a lipid-harboring module through which they mediate lipid transport between the two adjacent membranes. Here, we describe in vitro liposome-based methods to study the membrane tethering and lipid transport functions of E-Syt1. Its membrane tethering activity is monitored through a turbidity-based assay, and its lipid transport property is analyzed via fluorescence resonance energy transfer (FRET)-based assay. These in vitro methods have enabled us to gain insight into the mechanism of action and regulation of E-Syt1, such as the role of Ca2+ in releasing E-Syt1 from an autoinhibitory conformation. The same methods could be adapted to the study of other lipid transport proteins that function at membrane contact sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedman JR, Voeltz GK (2011) The ER in 3D: a multifunctional dynamic membrane network. Trends Cell Biol 21:709–717

    Article  CAS  Google Scholar 

  2. Gallo A, Vannier C, Galli T (2016) Endoplasmic reticulum-plasma membrane associations:structures and functions. Annu Rev Cell Dev Biol 32:279–301

    Article  CAS  Google Scholar 

  3. Saheki Y, De Camilli P (2017) Endoplasmic reticulum-plasma membrane contact sites. Annu Rev Biochem 86:659–684

    Article  CAS  Google Scholar 

  4. Stefan CJ, Manford AG, Emr SD (2013) ER-PM connections: sites of information transfer and inter-organelle communication. Curr Opin Cell Biol 25:434–442

    Article  CAS  Google Scholar 

  5. Bian X, Saheki Y, De Camilli P (2018) Ca(2+) releases E-Syt1 autoinhibition to couple ER-plasma membrane tethering with lipid transport. EMBO J 37:219–234

    Article  CAS  Google Scholar 

  6. Giordano F, Saheki Y, Idevall-Hagren O et al (2013) PI(4,5)P(2)-dependent and Ca(2+)-regulated ER-PM interactions mediated by the extended synaptotagmins. Cell 153:1494–1509

    Article  CAS  Google Scholar 

  7. Manford AG, Stefan CJ, Yuan HL et al (2012) ER-to-plasma membrane tethering proteins regulate cell signaling and ER morphology. Dev Cell 23:1129–1140

    Article  CAS  Google Scholar 

  8. Min SW, Chang WP, Sudhof TC (2007) E-Syts, a family of membranous Ca2+−sensor proteins with multiple C2 domains. Proc Natl Acad Sci U S A 104:3823–3828

    Article  CAS  Google Scholar 

  9. Toulmay A, Prinz WA (2012) A conserved membrane-binding domain targets proteins to organelle contact sites. J Cell Sci 125:49–58

    Article  CAS  Google Scholar 

  10. Saheki Y, Bian X, Schauder CM et al (2016) Control of plasma membrane lipid homeostasis by the extended synaptotagmins. Nat Cell Biol 18:504–515

    Article  CAS  Google Scholar 

  11. Kopec KO, Alva V, Lupas AN (2010) Homology of SMP domains to the TULIP superfamily of lipid-binding proteins provides a structural basis for lipid exchange between ER and mitochondria. Bioinformatics 26:1927–1931

    Article  CAS  Google Scholar 

  12. Kopec KO, Alva V, Lupas AN (2011) Bioinformatics of the TULIP domain superfamily. Biochem Soc Trans 39:1033–1038

    Article  CAS  Google Scholar 

  13. Lee I, Hong W (2006) Diverse membrane-associated proteins contain a novel SMP domain. FASEB J 20:202–206

    Article  CAS  Google Scholar 

  14. Schauder CM, Wu X, Saheki Y et al (2014) Structure of a lipid-bound extended synaptotagmin indicates a role in lipid transfer. Nature 510:552–555

    Article  CAS  Google Scholar 

  15. Chang CL, Hsieh TS, Yang TT et al (2013) Feedback regulation of receptor-induced Ca2+ signaling mediated by E-Syt1 and Nir2 at endoplasmic reticulum-plasma membrane junctions. Cell Rep 5:813–825

    Article  Google Scholar 

  16. Fernandez-Busnadiego R, Saheki Y, De Camilli P (2015) Three-dimensional architecture of extended synaptotagmin-mediated endoplasmic reticulum-plasma membrane contact sites. Proc Natl Acad Sci U S A 112:E2004–E2013

    Article  CAS  Google Scholar 

  17. Idevall-Hagren O, Lu A, Xie B et al (2015) Triggered Ca2+ influx is required for extended synaptotagmin 1-induced ER-plasma membrane tethering. EMBO J 34:2291–2305

    Article  CAS  Google Scholar 

  18. Kornmann B, Currie E, Collins SR et al (2009) An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325:477–481

    Article  CAS  Google Scholar 

  19. Lees JA, Messa M, Sun EW et al (2017) Lipid transport by TMEM24 at ER-plasma membrane contacts regulates pulsatile insulin secretion. Science 355:709

    Article  CAS  Google Scholar 

  20. Liu LK, Choudhary V, Toulmay A et al (2017) An inducible ER-Golgi tether facilitates ceramide transport to alleviate lipotoxicity. J Cell Biol 216:131–147

    Article  CAS  Google Scholar 

  21. Reinisch KM, De Camilli P (2016) SMP-domain proteins at membrane contact sites: structure and function. Biochim Biophys Acta 1861:924–927

    Article  CAS  Google Scholar 

  22. Yu H, Liu Y, Gulbranson DR et al (2016) Extended synaptotagmins are Ca2+−dependent lipid transfer proteins at membrane contact sites. Proc Natl Acad Sci U S A 113:4362–4367

    Article  CAS  Google Scholar 

  23. Bornhorst JA, Falke JJ (2000) Purification of proteins using polyhistidine affinity tags. Methods Enzymol 326:245–254

    Article  CAS  Google Scholar 

  24. Nichols JW, Pagano RE (1983) Resonance energy transfer assay of protein-mediated lipid transfer between vesicles. J Biol Chem 258:5368–5371

    CAS  PubMed  Google Scholar 

  25. Angeletti C, Nichols JW (1998) Dithionite quenching rate measurement of the inside-outside membrane bilayer distribution of 7-nitrobenz-2-oxa-1,3-diazol-4-yl-labeled phospholipids. Biochemistry 37:15114–15119

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Frederic Pincet, Joshua Lees, Frank Wilson, Heather Wheeler, Louise Lucast, and Yiying Cai for technical assistance. P.D.C. was supported in part by NIH grants NS036251 and DA018343. X.B. was supported by a Human Frontier Science Program long-term fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro De Camilli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bian, X., De Camilli, P. (2019). In Vitro Assays to Measure the Membrane Tethering and Lipid Transport Activities of the Extended Synaptotagmins. In: Drin, G. (eds) Intracellular Lipid Transport. Methods in Molecular Biology, vol 1949. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9136-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9136-5_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9135-8

  • Online ISBN: 978-1-4939-9136-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics