Skip to main content

Computationally Characterizing Protein-Bound Long Noncoding RNAs and Their Secondary Structure Using Protein Interaction Profile Sequencing (PIP-Seq) in Plants

  • Protocol
Book cover Plant Long Non-Coding RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1933))

Abstract

Two major components of posttranscriptional regulation are RNA–protein interactions and RNA secondary structure. While noncoding RNAs are far more abundant than messenger RNAs in eukaryotic systems, their functions remain largely unstudied. Evidence suggests that RNA–protein interactions and RNA secondary structure also regulate the function of long noncoding RNAs (lncRNAs), which are noncoding RNAs over 200 nucleotides (nt) in length. Protein interaction profile sequencing (PIP-seq) allows researchers to perform an unbiased screen of protein-bound regions and secondary structure of RNAs throughout a transcriptome of interest. Using a peak calling approach, our pipeline is able to identify protein-protected sites (PPSs), which are putative RNA–protein interaction sites. Additionally, by taking the ratio of read coverages in double-stranded RNA (dsRNA)-seq compared to single-stranded RNA (ssRNA)-seq libraries, our analysis can also calculate an RNA secondary structure score that reflects the likelihood of a region being comprised of double- or single-stranded ribonucleotides. Researchers can also use this pipeline to look at specific regions of interest, such as known lncRNAs, and determine their protein-bound status as well as elucidate their secondary structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vandivier LE, Anderson SJ, Foley SW et al (2016) The conservation and function of RNA secondary structure in plants. Annu Rev Plant Biol 67:463–488. https://doi.org/10.1146/annurev-arplant-043015-111754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ponjavic J, Pontig CP, Lunter G (2007) Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res 17:556–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chodroff RA, Goodstadt L, Sirey TM, Oliver PL et al (2010) Long noncoding RNA genes: conservation of sequence and brain expression among diverse amniotes. Genome Biol 11:R72. https://doi.org/10.1186/gb-2010-11-7-r72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barra J, Leucci E (2017) Probing long non-coding RNA-protein interactions. Front Mol Biosci 4:45. https://doi.org/10.3389/fmolb.2017.00045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Foley SW, Gosai SJ, Wang D et al (2017) A global view of RNA-protein interactions identifies post-transcriptional regulators of root hair cell fate. Dev Cell 41:204–220. https://doi.org/10.1016/j.devcel.2017.03.018

    Article  CAS  PubMed  Google Scholar 

  6. Gosai SJ, Foley SW, Wang D et al (2015) Global analysis of the RNA-protein interaction and RNA secondary structure landscapes of the Arabidopsis nucleus. Mol Cell 57:376–388. https://doi.org/10.1016/j.molcel.2014

    Article  CAS  PubMed  Google Scholar 

  7. Silverman IM, Li F, Alexander A et al (2014) RNase-mediated protein footprint sequencing reveals protein-binding sites throughout the human transcriptome. Genome Biol 15:R3. https://doi.org/10.1186/gb-2014-15-1-r3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li H, Handsaker B, Wysoker A et al (2009) The Sequence alignment/map (SAM) format and SAMtools. Bioinformatics 25:2078–2019. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993. https://doi.org/10.1093/bioinformatics/btr509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Quinlan AR, Hall IM (2010) BEDtools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842. https://doi.org/10.1093/bioinformatics/btq033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17(1):10–12. https://doi.org/10.14806/ej.17.1.200

    Article  Google Scholar 

  12. Trapnell C, Pachter L, Salzberg S (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111. https://doi.org/10.1093/bioinformatics/btp120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Muino J, Kaufmann K, van Ham R et al (2011) ChIP-seq Analysis in R (CSAR): an R package for the statistical detection of protein-bound genomic regions. Plant Methods 7:11. https://doi.org/10.1186/1746-4811-7-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the members of the Gregory lab both past and present for helpful discussions. This work was funded by NSF grants MCB-1243947, MCB-1623887, and IOS-1444490 to B.D.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian D. Gregory .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Shan, M., Anderson, Z.D., Gregory, B.D. (2019). Computationally Characterizing Protein-Bound Long Noncoding RNAs and Their Secondary Structure Using Protein Interaction Profile Sequencing (PIP-Seq) in Plants. In: Chekanova, J.A., Wang, HL.V. (eds) Plant Long Non-Coding RNAs. Methods in Molecular Biology, vol 1933. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9045-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9045-0_22

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9044-3

  • Online ISBN: 978-1-4939-9045-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics