Skip to main content

Pooled Lentiviral CRISPR-Cas9 Screens for Functional Genomics in Mammalian Cells

  • Protocol
  • First Online:
Book cover Brain Tumor Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1869))

Abstract

CRISPR-Cas9 technology provides a simple way to introduce targeted mutations into mammalian cells to induce loss-of-function phenotypes. The CRISPR-Cas9 system has now successfully been applied for genetic screens in many cell types, providing a powerful tool for functional genomics with manifold applications. Genome-wide guide-RNA (gRNA) libraries allow facile generation of a pool of cells, each harboring a gene knockout mutation that can be used for the study of gene function, pathway analysis or the identification of genes required for cellular fitness. Furthermore, CRISPR genetic screens can be applied for the discovery of genes whose knockout sensitizes cells to drug treatments or mediates drug resistance. Here, we provide a detailed protocol discussing the necessary steps for the successful performance of pooled CRISPR-Cas9 screens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barrangou R, Doudna JA (2016) Applications of CRISPR technologies in research and beyond. Nat Biotechnol 34:933–941. https://doi.org/10.1038/nbt.3659

    Article  CAS  PubMed  Google Scholar 

  2. Wright AV, Nuñez JK, Doudna JA (2016) Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 164:29–44. https://doi.org/10.1016/j.cell.2015.12.035

    Article  CAS  PubMed  Google Scholar 

  3. Jiang F, Doudna JA (2017) CRISPR–Cas9 structures and mechanisms. Annu Rev Biophys 46. https://doi.org/10.1146/annurev-biophys-062215-010822

    Article  CAS  Google Scholar 

  4. Joung J, Konermann S, Gootenberg JS et al (2017) Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat Protoc 12:828–863. https://doi.org/10.1038/nprot.2017.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hart T, Chandrashekhar M, Aregger M et al (2015) High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell 163:1515–1526. https://doi.org/10.1016/j.cell.2015.11.015

    Article  CAS  PubMed  Google Scholar 

  6. Wang T, Wei JJ, Sabatini DM, Lander ES (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343:80–84. https://doi.org/10.1126/science.1246981

    Article  CAS  PubMed  Google Scholar 

  7. Wang T, Birsoy K, Hughes NW et al (2015) Identification and characterization of essential genes in the human genome. Science 350:1096–1101. https://doi.org/10.1126/science.aac7041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Park RJ, Wang T, Koundakjian D et al (2016) A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors. Nat Genet 49:193–203. https://doi.org/10.1038/ng.3741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tzelepis K, Koike-Yusa H, De Braekeleer E et al (2016) A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic targets in acute myeloid leukemia. Cell Rep 17:1193–1205. https://doi.org/10.1016/j.celrep.2016.09.079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ma H, Dang Y, Wu Y et al (2015) A CRISPR-based screen identifies genes essential for west-nile-virus-induced cell death. Cell Rep 12:673–683. https://doi.org/10.1016/j.celrep.2015.06.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Doench JG, Fusi N, Sullender M et al (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34:184–191. https://doi.org/10.1038/nbt.3437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hart T, Tong A, Chan K et al (2017) Evaluation and design of genome-wide CRISPR/SpCas9 Knockout screens. G3 7(8):2719–2727. https://doi.org/10.1534/g3.117.041277

    Article  PubMed  Google Scholar 

  13. Sanjana NE, Shalem O, Zhang F (2014) Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 11:783–784. https://doi.org/10.1038/nmeth.3047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Evers B, Jastrzebski K, Heijmans JPM et al (2016) CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes. Nat Biotechnol 34:631–633. https://doi.org/10.1038/nbt.3536

    Article  CAS  PubMed  Google Scholar 

  15. Shalem O, Sanjana NE, Hartenian E et al (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343:84–87. https://doi.org/10.1126/science.1247005

    Article  CAS  PubMed  Google Scholar 

  16. Koike-Yusa H, Li Y, Tan E-P et al (2013) Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol 32:267–273. https://doi.org/10.1038/nbt.2800

    Article  CAS  PubMed  Google Scholar 

  17. Parnas O, Jovanovic M, Eisenhaure TM et al (2015) A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell 162:675–686. https://doi.org/10.1016/j.cell.2015.06.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Steinhart Z, Pavlovic Z, Chandrashekhar M et al (2016) Genome-wide CRISPR screens reveal a Wnt–FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors. Nat Med 23:60–68. https://doi.org/10.1038/nm.4219

    Article  CAS  PubMed  Google Scholar 

  19. Wang T, Yu H, Hughes NW et al (2017) Gene essentiality profiling reveals gene networks and synthetic lethal interactions with oncogenic ras. Cell 168:890–903.e15. https://doi.org/10.1016/j.cell.2017.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hart T, Brown KR, Sircoulomb F et al (2014) Measuring error rates in genomic perturbation screens: gold standards for human functional genomics. Mol Syst Biol 10:733–733. https://doi.org/10.15252/msb.20145216

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hart T, Moffat J (2016) BAGEL: a computational framework for identifying essential genes from pooled library screens. BMC Bioinformatics 17:164. https://doi.org/10.1186/s12859-016-1015-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank members of the Moffat lab for helpful comments. This work was supported by the Canadian Institutes for Health Research (CIHR#342551) to JM. MA holds a postdoctoral fellowship award from the Swiss National Science Foundation, MC holds an Ontario Graduate Scholarship and JM is a Canada Research Chair in Functional Genetics Tier 2. Michael Aregger and Megha Chandrashekhar contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Moffat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Aregger, M., Chandrashekhar, M., Tong, A.H.Y., Chan, K., Moffat, J. (2019). Pooled Lentiviral CRISPR-Cas9 Screens for Functional Genomics in Mammalian Cells. In: Singh, S., Venugopal, C. (eds) Brain Tumor Stem Cells. Methods in Molecular Biology, vol 1869. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8805-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8805-1_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8804-4

  • Online ISBN: 978-1-4939-8805-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics