Skip to main content

Fluorescent Protein Visualization Immediately After Gel Electrophoresis Using an In-Gel Trichloroethanol Photoreaction with Tryptophan

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1853))

Abstract

SDS–polyacrylamide gel electrophoresis (SDS-PAGE) is one of the essential techniques in molecular biology and biochemistry laboratories and requires rapid visualization methods for efficient sample analysis. Proteins on polyacrylamide gels can be visualized within 5 min via the photoreaction of tryptophan with trichloroethanol. This process does not require protein fixation, staining, or destaining. In this method polyacrylamide gels are prepared by adding trichloroethanol before polymerization. After electrophoresis, the gel is immediately activated on a standard UV transilluminator and the fluorescently labeled proteins are imaged. The reaction is based on the photoreaction of trichloroethanol with tryptophan residues within the protein. This generates a visible blue-green fluorescence (∼500 nm) that is accurately imaged. Here we describe the preparation of Tris–glycine and Tris–tricine SDS–polyacrylamide gels with trichloroethanol and the photoreaction and visualization of tryptophan containing proteins.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Westermeier R (2016) Electrophoresis in practice: a guide to methods and applications of DNA and protein separations. Wiley, New Jersey

    Book  Google Scholar 

  2. Gauci VJ, Wright EP, Coorssen JR (2011) Quantitative proteomics: assessing the spectrum of in-gel protein detection methods. J Chem Biol 4:3–29

    Article  PubMed  Google Scholar 

  3. Dzandu JK, Johnson JF, Wise GE (1988) Sodium dodecyl sulfate-gel electrophoresis: staining of polypeptides using heavy metal salts. Anal Biochem 174:157–167

    Article  CAS  PubMed  Google Scholar 

  4. Ladner CL, Yang J, Turner RJ, Edwards RA (2004) Visible fluorescent detection of proteins in polyacrylamide gels without staining. Anal Biochem 326:13–20

    Article  CAS  PubMed  Google Scholar 

  5. Ladner CL, Khai T, Le M, Turner RJ, Edwards RA (2014) Excited state photoreaction between the indole side chain of tryptophan and halocompounds generates new fluorophores and unique modifications. Photochem Photobiol 90:1027–1033

    PubMed  CAS  Google Scholar 

  6. Edwards RA, Jickling G, Turner RJ (2002) The light-induced reactions of tryptophan with halocompounds. Photochem Photobiol 75:362–368

    Article  CAS  PubMed  Google Scholar 

  7. Bay DC, Budiman RA, Nieh M-P, Turner RJ (2010) Multimeric forms of the small multidrug resistance protein EmrE in anionic detergent. Biochim Biophys Acta 1798:526–535

    Article  CAS  PubMed  Google Scholar 

  8. Ladner CL, Edwards RA, Schriemer DC, Turner RJ (2006) Identification of trichloroethanol visualized proteins from two-dimensional polyacrylamide gels by mass spectrometry. Anal Chem 78:2388–2396

    Article  CAS  PubMed  Google Scholar 

  9. Colella AD, Chegenii N, Tea MN, Gibbins IL, Williams KA, Chataway TK (2012) Comparison of Stain-Free gels with traditional immunoblot loading control methodology. Anal Biochem 430:108–110

    Article  CAS  PubMed  Google Scholar 

  10. Holzmueller W, Kulozik U (2016) Protein quantification by means of a stain-free SDS-PAGE technology without the need for analytical standards: verification and validation of the method. J Food Compos Anal 48:128–134

    Article  CAS  Google Scholar 

  11. Guertler A, Kunz N, Gomolka M, Hornhardt S, Friedl AA, McDonald K, Kohn JE, Posch A (2013) Stain-Free technology as a normalization tool in Western blot analysis. Anal Biochem 433:105–111

    Article  CAS  Google Scholar 

  12. Schagger H (2006) Tricine-SDS-PAGE. Nat Protoc 1:16–22

    Article  CAS  PubMed  Google Scholar 

  13. Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379

    Article  PubMed  Google Scholar 

  14. Haider SR, Reid HJ, Sharp BL (2012) In: Kurien BT, Scofield RH (eds) Protein electrophoresis: methods and protocols. Humana Press, Totowa, NJ, pp 81–91

    Chapter  Google Scholar 

  15. Susnea I, Bernevic B, Wicke M, Ma L, Liu S, Schellander K, Przybylski M (2013) In: Cai Z, Liu S (eds) Applications of Maldi-Tof spectroscopy, vol 331, pp 37–54

    Chapter  Google Scholar 

  16. Montigny C, Decottignies P, Le Marechal P, Capy P, Bublitz M, Olesen C, Moller JV, Nissen P, le Maire M (2014) S-Palmitoylation and S-oleoylation of rabbit and pig sarcolipin. J Biol Chem 289:33850–33861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Laurie KJ, Dave A, Straga T, Souzeau E, Chataway T, Sykes MJ, Casey T, Teo T, Pater J, Craig JE et al (2013) Identification of a novel oligomerization disrupting mutation in CRYA associated with congenital cataract in a south Australian family. Hum Mutat 34:435–438

    Article  CAS  PubMed  Google Scholar 

  18. Gilda JE, Gomes AV (2015) In: Posch A (ed) Proteomic profiling: methods and protocols, vol 1295, pp 381–391

    Google Scholar 

  19. Raykin J, Snider E, Bheri S, Mulvihill J, Ethier CR (2017) A modified gelatin zymography technique incorporating total protein normalization. Anal Biochem 521:8–10

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Natural Sciences and Engineering Research Council of Canada (NSERC) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Edwards .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ladner-Keay, C.L., Turner, R.J., Edwards, R.A. (2018). Fluorescent Protein Visualization Immediately After Gel Electrophoresis Using an In-Gel Trichloroethanol Photoreaction with Tryptophan. In: Kurien, B., Scofield, R. (eds) Protein Gel Detection and Imaging. Methods in Molecular Biology, vol 1853. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8745-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8745-0_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8744-3

  • Online ISBN: 978-1-4939-8745-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics