Skip to main content

Assessment of Intracellular Auto-Modification Levels of ARTD10 Using Mono-ADP-Ribose-Specific Macrodomains 2 and 3 of Murine Artd8

  • Protocol
  • First Online:
Book cover ADP-ribosylation and NAD+ Utilizing Enzymes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1813))

Abstract

Mono-ADP-ribosylation is a posttranslational modification, which is catalyzed in cells by certain members of the ADP-ribosyltransferase diphtheria toxin-like family (ARTD) of ADP-ribosyltransferases (aka PARP enzymes). It involves the transfer of a single residue of ADP-ribose (ADPr) from the cofactor NAD+ onto substrate proteins. Although 12 of the 17 members of the ARTD family have been defined as mono-ARTDs in in vitro assays, relatively little is known about their exact cellular functions. A major challenge is the detection of mono-ADP-ribosylated (MARylated) proteins in cells as no antibodies are available that detect exclusively MARylated proteins. As an alternative to classical antibodies, the MAR-specific binding domains macro2 and macro3 of Artd8 can be utilized alone or in combination, to demonstrate intracellular auto-modification levels of ARTD10 in cells in both co-immunoprecipitation and co-localization experiments. Here we demonstrate that different macrodomain constructs of human ARTD8 and murine Artd8, alone or in combination, exert differences with regard to their interaction with ARTD10 in cells. Precisely, while the macrodomains of murine Artd8 interacted with ARTD10 in cells in a MARylation-dependent manner, the macrodomains of human ARTD8 interacted with ARTD10 independent of its catalytic activity. Moreover, we show that a combination of macro2 and macro3 of murine Artd8 was recruited more efficiently to ARTD10 during co-localization experiments compared to the single domains. Therefore, murine Artd8 macrodomain constructs can serve as a tool to evaluate intracellular ARTD10 auto-modification levels using the described methods, while the human ARTD8 macrodomains are less suited because of ADPr-independent binding to ARTD10. Protocols for co-immunoprecipitation and co-localization experiments are described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hottiger MO (2015) Nuclear ADP-ribosylation and its role in chromatin plasticity, cell differentiation, and epigenetics. Annu Rev Biochem 84:227–263. https://doi.org/10.1146/annurev-biochem-060614-034506

    Article  CAS  PubMed  Google Scholar 

  2. Hottiger MO, Hassa PO, Luscher B, Schuler H, Koch-Nolte F (2010) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 35(4):208–219. https://doi.org/10.1016/j.tibs.2009.12.003

    Article  CAS  PubMed  Google Scholar 

  3. Vyas S, Matic I, Uchima L, Rood J, Zaja R, Hay RT, Ahel I, Chang P (2014) Family-wide analysis of poly(ADP-ribose) polymerase activity. Nat Commun 5:4426. https://doi.org/10.1038/ncomms5426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Loseva O, Jemth AS, Bryant HE, Schuler H, Lehtio L, Karlberg T, Helleday T (2010) PARP-3 is a mono-ADP-ribosylase that activates PARP-1 in the absence of DNA. J Biol Chem 285(11):8054–8060. https://doi.org/10.1074/jbc.M109.077834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kickhoefer VA, Siva AC, Kedersha NL, Inman EM, Ruland C, Streuli M, Rome LH (1999) The 193-kD vault protein, VPARP, is a novel poly(ADP-ribose) polymerase. J Cell Biol 146(5):917–928

    Article  CAS  Google Scholar 

  6. Yang CS, Jividen K, Spencer A, Dworak N, Ni L, Oostdyk LT, Chatterjee M, Kusmider B, Reon B, Parlak M, Gorbunova V, Abbas T, Jeffery E, Sherman NE, Paschal BM (2017) Ubiquitin modification by the E3 Ligase/ADP-ribosyltransferase Dtx3L/Parp9. Mol Cell 66(4):503–516.e505. https://doi.org/10.1016/j.molcel.2017.04.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kleine H, Poreba E, Lesniewicz K, Hassa PO, Hottiger MO, Litchfield DW, Shilton BH, Luscher B (2008) Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation. Mol Cell 32(1):57–69. https://doi.org/10.1016/j.molcel.2008.08.009

    Article  CAS  PubMed  Google Scholar 

  8. Yu M, Schreek S, Cerni C, Schamberger C, Lesniewicz K, Poreba E, Vervoorts J, Walsemann G, Grotzinger J, Kremmer E, Mehraein Y, Mertsching J, Kraft R, Austen M, Luscher-Firzlaff J, Luscher B (2005) PARP-10, a novel Myc-interacting protein with poly(ADP-ribose) polymerase activity, inhibits transformation. Oncogene 24(12):1982–1993. https://doi.org/10.1038/sj.onc.1208410

    Article  CAS  PubMed  Google Scholar 

  9. Feijs KL, Kleine H, Braczynski A, Forst AH, Herzog N, Verheugd P, Linzen U, Kremmer E, Luscher B (2013) ARTD10 substrate identification on protein microarrays: regulation of GSK3beta by mono-ADP-ribosylation. Cell Commun Signal 11(1):5. https://doi.org/10.1186/1478-811x-11-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Verheugd P, Forst AH, Milke L, Herzog N, Feijs KL, Kremmer E, Kleine H, Luscher B (2013) Regulation of NF-kappaB signalling by the mono-ADP-ribosyltransferase ARTD10. Nat Commun 4:1683. https://doi.org/10.1038/ncomms2672

    Article  CAS  PubMed  Google Scholar 

  11. Eckei L, Krieg S, Butepage M, Lehmann A, Gross A, Lippok B, Grimm AR, Kummerer BM, Rossetti G, Luscher B, Verheugd P (2017) The conserved macrodomains of the non-structural proteins of Chikungunya virus and other pathogenic positive strand RNA viruses function as mono-ADP-ribosylhydrolases. Sci Rep 7:41746. https://doi.org/10.1038/srep41746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Atasheva S, Frolova EI, Frolov I (2014) Interferon-stimulated poly(ADP-ribose) polymerases are potent inhibitors of cellular translation and virus replication. J Virol 88(4):2116–2130. https://doi.org/10.1128/JVI.03443-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Herzog N, Hartkamp JD, Verheugd P, Treude F, Forst AH, Feijs KL, Lippok BE, Kremmer E, Kleine H, Luscher B (2013) Caspase-dependent cleavage of the mono-ADP-ribosyltransferase ARTD10 interferes with its pro-apoptotic function. FEBS J 280(5):1330–1343. https://doi.org/10.1111/febs.12124

    Article  CAS  PubMed  Google Scholar 

  14. Kaufmann M, Feijs KL, Luscher B (2015) Function and regulation of the mono-ADP-ribosyltransferase ARTD10. Curr Top Microbiol Immunol 384:167–188. https://doi.org/10.1007/82_2014_379

    Article  CAS  PubMed  Google Scholar 

  15. Feijs KL, Forst AH, Verheugd P, Luscher B (2013) Macrodomain-containing proteins: regulating new intracellular functions of mono(ADP-ribosyl)ation. Nat Rev Mol Cell Biol 14(7):443–451. https://doi.org/10.1038/nrm3601

    Article  CAS  PubMed  Google Scholar 

  16. Verheugd P, Butepage M, Eckei L, Luscher B (2016) Players in ADP-ribosylation: readers and erasers. Curr Protein Pept Sci 17(7):654–667

    Article  CAS  Google Scholar 

  17. Forst AH, Karlberg T, Herzog N, Thorsell AG, Gross A, Feijs KL, Verheugd P, Kursula P, Nijmeijer B, Kremmer E, Kleine H, Ladurner AG, Schuler H, Luscher B (2013) Recognition of mono-ADP-ribosylated ARTD10 substrates by ARTD8 macrodomains. Structure 21(3):462–475. https://doi.org/10.1016/j.str.2012.12.019

    Article  CAS  PubMed  Google Scholar 

  18. Kleine H, Herrmann A, Lamark T, Forst AH, Verheugd P, Luscher-Firzlaff J, Lippok B, Feijs KL, Herzog N, Kremmer E, Johansen T, Muller-Newen G, Luscher B (2012) Dynamic subcellular localization of the mono-ADP-ribosyltransferase ARTD10 and interaction with the ubiquitin receptor p62. Cell Commun Signal 10(1):28. https://doi.org/10.1186/1478-811x-10-28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Caliandro R, Rossetti G, Carloni P (2012) Local fluctuations and conformational transitions in proteins. J Chem Theory Comput 8(11):4775–4785. https://doi.org/10.1021/ct300610y

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank G. Müller-Newen and the core facility “Immunohistochemistry and Confocal Microscopy Facility” of the Medical School of the RWTH Aachen University for support. Our work was supported by grants from the German Science Foundation (DFG LU 466/16-1), the IZKF Aachen (O2-1-2014) of the Medical School of the RWTH Aachen University, the Start-Up program of the Excellence Initiative of the RWTH Aachen University (StUpPD_119_13), and by the START program of the Faculty of Medicine, RWTH Aachen University (117/15 and 121/17).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mareike Bütepage or Bernhard Lüscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bütepage, M. et al. (2018). Assessment of Intracellular Auto-Modification Levels of ARTD10 Using Mono-ADP-Ribose-Specific Macrodomains 2 and 3 of Murine Artd8. In: Chang, P. (eds) ADP-ribosylation and NAD+ Utilizing Enzymes. Methods in Molecular Biology, vol 1813. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-8588-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8588-3_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8587-6

  • Online ISBN: 978-1-4939-8588-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics