Skip to main content

Expression and Purification of Site-Specifically Lysine-Acetylated and Natively-Folded Proteins for Biophysical Investigations

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1728))

Abstract

N-(ε)-lysine-acetylation (short: lysine-acetylation) is a dynamic and powerful posttranslational modification to regulate protein function. Mutational approaches are often poor to access the real mechanistic impact of lysine-acetylation at the molecular level. Therefore, the ability to site-specifically incorporate N-(ε)-acetyl-l-lysine (short: AcK) into proteins dramatically increased our understanding how lysine-acetylation regulates protein function by using diverse molecular mechanisms going far beyond neutralizing a positive charge at the lysine-side chain. Genetically encoding AcK is a powerful way to introduce AcK into proteins, resulting in homogenously, quantitatively, and site-specifically lysine-acetylated proteins. Thereby, lysine-acetylated proteins can be produced in their natively-folded state in a high quality and in a yield sufficient to perform biophysical studies, including X-ray crystallography. This protocol describes the expression and purification of site-specifically lysine-acetylated proteins in Escherichia coli using the genetic-code expansion concept (GCEC) and subsequent steps to assess the successful incorporation of AcK by immunoblotting and mass-spectrometry.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. de Boor S et al (2015) Small GTP-binding protein Ran is regulated by posttranslational lysine acetylation. Proc Natl Acad Sci U S A 112(28):E3679–E3688

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lammers M, Neumann H, Chin JW, James LC (2010) Acetylation regulates cyclophilin A catalysis, immunosuppression and HIV isomerization. Nat Chem Biol 6(5):331–337

    Article  CAS  PubMed  Google Scholar 

  3. Knyphausen P, Kuhlmann N, de Boor S, Lammers M (2015) Lysine-acetylation as a fundamental regulator of Ran function: implications for signaling of proteins of the Ras-superfamily. Small GTPases 6(4):189–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Neumann H et al (2009) A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation. Mol Cell 36(1):153–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Neumann H, Peak-Chew SY, Chin JW (2008) Genetically encoding N(epsilon)-acetyllysine in recombinant proteins. Nat Chem Biol 4(4):232–234

    Article  CAS  PubMed  Google Scholar 

  6. Kuhlmann N et al (2016) Structural and mechanistic insights into the regulation of the fundamental rho regulator RhoGDIalpha by lysine acetylation. J Biol Chem 291(11):5484–5499

    Article  CAS  PubMed  Google Scholar 

  7. Kuhlmann N, Wroblowski S, Scislowski L, Lammers M (2016) RhoGDIalpha acetylation at K127 and K141 affects binding toward nonprenylated RhoA. Biochemistry 55(2):304–312

    Article  CAS  PubMed  Google Scholar 

  8. Knyphausen P, Lang F, Baldus L, Extra A, Lammers M (2016) Insights into K-Ras 4B regulation by post-translational lysine acetylation. Biol Chem 397(10):1071–1085

    Article  CAS  PubMed  Google Scholar 

  9. Shogren-Knaak M et al (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311(5762):844–847

    Article  CAS  PubMed  Google Scholar 

  10. Robinson PJ et al (2008) 30 nm chromatin fibre decompaction requires both H4-K16 acetylation and linker histone eviction. J Mol Biol 381(4):816–825

    Article  CAS  PubMed  Google Scholar 

  11. Gertz M et al (2012) A molecular mechanism for direct sirtuin activation by resveratrol. PLoS One 7(11):e49761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Burke SA, Lo SL, Krzycki JA (1998) Clustered genes encoding the methyltransferases of methanogenesis from monomethylamine. J Bacteriol 180(13):3432–3440

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wan W, Tharp JM, Liu WR (2014) Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool. Biochim Biophys Acta 1844(6):1059–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Knyphausen P et al (2016) Insights into lysine deacetylation of natively folded substrate proteins by sirtuins. J Biol Chem 291(28):14677–14694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gibson DG et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345

    Article  CAS  PubMed  Google Scholar 

  16. Cox J et al (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10(4):1794–1805

    Article  CAS  PubMed  Google Scholar 

  17. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372

    Article  CAS  PubMed  Google Scholar 

  18. Chin JW, Martin AB, King DS, Wang L, Schultz PG (2002) Addition of a photocrosslinking amino acid to the genetic code of Escherichiacoli. Proc Natl Acad Sci U S A 99(17):11020–11024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Johnson DB et al (2012) Release factor one is nonessential in Escherichia coli. ACS Chem Biol 7(8):1337–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Johnson DB et al (2011) RF1 knockout allows ribosomal incorporation of unnatural amino acids at multiple sites. Nat Chem Biol 7(11):779–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mukai T et al (2015) Highly reproductive Escherichia coli cells with no specific assignment to the UAG codon. Sci Rep 5:9699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schmied WH, Elsasser SJ, Uttamapinant C, Chin JW (2014) Efficient multisite unnatural amino acid incorporation in mammalian cells via optimized pyrrolysyl tRNA synthetase/tRNA expression and engineered eRF1. J Am Chem Soc 136(44):15577–15583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. O’Donoghue P et al (2012) Near-cognate suppression of amber, opal and quadruplet codons competes with aminoacyl-tRNAPyl for genetic code expansion. FEBS Lett 586(21):3931–3937

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wan W et al (2010) A facile system for genetic incorporation of two different noncanonical amino acids into one protein in Escherichia coli. Angew Chem Int Ed Engl 49(18):3211–3214

    Article  CAS  PubMed  Google Scholar 

  25. Odoi KA, Huang Y, Rezenom YH, Liu WR (2013) Nonsense and sense suppression abilities of original and derivative Methanosarcina mazei pyrrolysyl-tRNA synthetase-tRNA(Pyl) pairs in the Escherichia coli BL21(DE3) cell strain. PLoS One 8(3):e57035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Niu W, Schultz PG, Guo J (2013) An expanded genetic code in mammalian cells with a functional quadruplet codon. ACS Chem Biol 8(7):1640–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Neumann H, Wang K, Davis L, Garcia-Alai M, Chin JW (2010) Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 464(7287):441–444

    Article  CAS  PubMed  Google Scholar 

  28. Chatterjee A, Sun SB, Furman JL, Xiao H, Schultz PG (2013) A versatile platform for single- and multiple-unnatural amino acid mutagenesis in Escherichia coli. Biochemistry 52(10):1828–1837

    Article  CAS  PubMed  Google Scholar 

  29. Chutipongtanate S, Watcharatanyatip K, Homvises T, Jaturongkakul K, Thongboonkerd V (2012) Systematic comparisons of various spectrophotometric and colorimetric methods to measure concentrations of protein, peptide and amino acid: detectable limits, linear dynamic ranges, interferences, practicality and unit costs. Talanta 98:123–129

    Article  CAS  PubMed  Google Scholar 

  30. Smith SJ, Rittinger K (2002) Preparation of GTPases for structural and biophysical analysis. Methods Mol Biol 189:13–24

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Christian Frese from the CECAD proteomics facility for support in writing the mass-spectrometry section and Marcus Krüger critical reading of the mass-spectrometry part of this manuscript. Furthermore, I thank CECAD for support and all members of my laboratory, particularly Dr. Susanne de Boor, for the preparation of some figures and discussions, and the Deutsche Forschungsgemeinschaft (DFG) for funding of my position by the Heisenberg Programme (LA 2984/3-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Lammers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lammers, M. (2018). Expression and Purification of Site-Specifically Lysine-Acetylated and Natively-Folded Proteins for Biophysical Investigations. In: Lemke, E. (eds) Noncanonical Amino Acids. Methods in Molecular Biology, vol 1728. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7574-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7574-7_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7573-0

  • Online ISBN: 978-1-4939-7574-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics