Skip to main content

Efficient Quantitative Comparisons of Plasma Proteomes Using Label-Free Analysis with MaxQuant

  • Protocol
  • First Online:
Book cover Serum/Plasma Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1619))

Abstract

Mass spectrometry (MS)-based quantitation of plasma proteomes is challenging due to the extremely wide dynamic range and molecular heterogeneity of plasma samples. However, recent advances in technology, MS instrumentation, and bioinformatics have enabled in-depth quantitative analyses of very complex proteomes, including plasma. Specifically, recent improvements in both label-based and label-free quantitation strategies have allowed highly accurate quantitative comparisons of expansive proteome datasets. Here we present a method for in-depth label-free analysis of human plasma samples using MaxQuant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1(11):845–867

    Article  CAS  PubMed  Google Scholar 

  2. Jacobs JM, Adkins JN, Qian WJ, Liu T, Shen Y, Camp DG 2nd, Smith RD (2005) Utilizing human blood plasma for proteomic biomarker discovery. J Proteome Res 4(4):1073–1085. doi:10.1021/pr0500657

    Article  CAS  PubMed  Google Scholar 

  3. Hoffman SA, Joo WA, Echan LA, Speicher DW (2007) Higher dimensional (Hi-D) separation strategies dramatically improve the potential for cancer biomarker detection in serum and plasma. J Chromatogr B Analyt Technol Biomed Life Sci 849(1–2):43–52. doi:10.1016/j.jchromb.2006.10.069. S1570-0232(06)00885-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  4. Gulcicek EE, Colangelo CM, McMurray W, Stone K, Williams K, Wu T, Zhao H, Spratt H, Kurosky A, Wu B (2005) Proteomics and the analysis of proteomic data: an overview of current protein-profiling technologies. Curr Protoc Bioinformatics. Chapter 13:Unit 13.11. doi:10.1002/0471250953.bi1301s10

  5. Geyer PE, Kulak NA, Pichler G, Holdt LM, Teupser D, Mann M (2016) Plasma proteome profiling to assess human health and disease. Cell Syst 2(3):185–195. doi:10.1016/j.cels.2016.02.015. S2405-4712(16)30072-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  6. Sandberg A, Branca RM, Lehtio J, Forshed J (2014) Quantitative accuracy in mass spectrometry based proteomics of complex samples: the impact of labeling and precursor interference. J Proteome 96:133–144. doi:10.1016/j.jprot.2013.10.035. S1874-3919(13)00550-2 [pii]

    Article  CAS  Google Scholar 

  7. Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75(8):1895–1904

    Article  CAS  PubMed  Google Scholar 

  8. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169. doi:10.1074/mcp.M400129-MCP200. M400129-MCP200 [pii].

    Article  CAS  PubMed  Google Scholar 

  9. Liu P, Beer LA, Ky B, Barnhart KT, Speicher DW (2017) Quantitative comparisons of large numbers of human plasma samples using TMT10plex labeling. Methods Mol Biol 1619

    Google Scholar 

  10. Wuhr M, Haas W, GC MA, Peshkin L, Rad R, Kirschner MW, Gygi SP (2012) Accurate multiplexed proteomics at the MS2 level using the complement reporter ion cluster. Anal Chem 84(21):9214–9221. doi:10.1021/ac301962s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Houel S, Abernathy R, Renganathan K, Meyer-Arendt K, Ahn NG, Old WM (2010) Quantifying the impact of chimera MS/MS spectra on peptide identification in large-scale proteomics studies. J Proteome Res 9(8):4152–4160. doi:10.1021/pr1003856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR, Resing KA, Ahn NG (2005) Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics 4(10):1487–1502. doi:10.1074/mcp.M500084-MCP200. M500084-MCP200 [pii]

    Article  CAS  PubMed  Google Scholar 

  13. America AH, Cordewener JH (2008) Comparative LC-MS: a landscape of peaks and valleys. Proteomics 8(4):731–749. doi:10.1002/pmic.200700694

    Article  CAS  PubMed  Google Scholar 

  14. Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389(4):1017–1031. doi:10.1007/s00216-007-1486-6

    Article  CAS  PubMed  Google Scholar 

  15. Bantscheff M, Lemeer S, Savitski MM, Kuster B (2012) Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem 404(4):939–965. doi:10.1007/s00216-012-6203-4

    Article  CAS  PubMed  Google Scholar 

  16. Li Z, Adams RM, Chourey K, Hurst GB, Hettich RL, Pan C (2012) Systematic comparison of label-free, metabolic labeling, and isobaric chemical labeling for quantitative proteomics on LTQ Orbitrap Velos. J Proteome Res 11(3):1582–1590. doi:10.1021/pr200748h

    Article  CAS  PubMed  Google Scholar 

  17. Megger DA, Pott LL, Ahrens M, Padden J, Bracht T, Kuhlmann K, Eisenacher M, Meyer HE, Sitek B (2014) Comparison of label-free and label-based strategies for proteome analysis of hepatoma cell lines. Biochim Biophys Acta 1844(5):967–976. doi:10.1016/j.bbapap.2013.07.017. S1570-9639(13)00289-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  18. Patel VJ, Thalassinos K, Slade SE, Connolly JB, Crombie A, Murrell JC, Scrivens JH (2009) A comparison of labeling and label-free mass spectrometry-based proteomics approaches. J Proteome Res 8(7):3752–3759. doi:10.1021/pr900080y

    Article  CAS  PubMed  Google Scholar 

  19. Schulze WX, Usadel B (2010) Quantitation in mass-spectrometry-based proteomics. Annu Rev Plant Biol 61:491–516. doi:10.1146/annurev-arplant-042809-112132

    Article  CAS  PubMed  Google Scholar 

  20. Karp NA, Huber W, Sadowski PG, Charles PD, Hester SV, Lilley KS (2010) Addressing accuracy and precision issues in iTRAQ quantitation. Mol Cell Proteomics 9(9):1885–1897. doi:10.1074/mcp.M900628-MCP200. M900628-MCP200 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ow SY, Salim M, Noirel J, Evans C, Rehman I, Wright PC (2009) iTRAQ underestimation in simple and complex mixtures: “the good, the bad and the ugly”. J Proteome Res 8(11):5347–5355. doi:10.1021/pr900634c

    Article  CAS  PubMed  Google Scholar 

  22. Ting L, Rad R, Gygi SP, Haas W (2011) MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics. Nat Methods 8(11):937–940. doi:10.1038/nmeth.1714. nmeth.714 [pii]

  23. Beer LA, Tang HY, Sriswasdi S, Barnhart KT, Speicher DW (2011) Systematic discovery of ectopic pregnancy serum biomarkers using 3-D protein profiling coupled with label-free quantitation. J Proteome Res 10(3):1126–1138. doi:10.1021/pr1008866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372. doi:10.1038/nbt.1511. nbt.1511 [pii]

    Article  CAS  PubMed  Google Scholar 

  25. Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10(4):1794–1805. doi:10.1021/pr101065j

    Article  CAS  PubMed  Google Scholar 

  26. Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13(9):2513–2526. doi:10.1074/mcp.M113.031591. M113.031591 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Beer LA, Ky B, Barnhart KT, Speicher DW (2017) In-depth, reproducible analysis of human plasma using IgY 14 and supermix immunodepletion. Methods Mol Biol 1619.

    Google Scholar 

  28. Tyanova S, Mann M, Cox J (2014) MaxQuant for in-depth analysis of large SILAC datasets. Methods Mol Biol 1188:351–364. doi:10.1007/978-1-4939-1142-4_24

    Article  PubMed  Google Scholar 

  29. Cox J, Matic I, Hilger M, Nagaraj N, Selbach M, Olsen JV, Mann M (2009) A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat Protoc 4(5):698–705. doi:10.1038/nprot.2009.36. nprot.2009.36 [pii]

    Article  CAS  PubMed  Google Scholar 

  30. Geiger T, Wehner A, Schaab C, Cox J, Mann M (2012) Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins. Mol Cell Proteomics 11(3):M111.014050. doi:10.1074/mcp.M111.014050. M111.014050 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  31. Elias JE, Gygi SP (2010) Target-decoy search strategy for mass spectrometry-based proteomics. Methods Mol Biol 604:55–71. doi:10.1007/978-1-60761-444-9_5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH Grants RO1HD076279, RO1CA131582, and WW Smith Charitable Trust Grants H1205 and H1305 (D.W. Speicher), PA Department of Health Commonwealth Universal Research Enhancement (CURE) Program Grant (B. Ky), as well as CA10815 (NCI core grant to the Wistar Institute).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Speicher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Beer, L.A., Liu, P., Ky, B., Barnhart, K.T., Speicher, D.W. (2017). Efficient Quantitative Comparisons of Plasma Proteomes Using Label-Free Analysis with MaxQuant. In: Greening, D., Simpson, R. (eds) Serum/Plasma Proteomics. Methods in Molecular Biology, vol 1619. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7057-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7057-5_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7056-8

  • Online ISBN: 978-1-4939-7057-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics