Skip to main content

Analysis of Protein Kinetics Using Fluorescence Recovery After Photobleaching (FRAP)

  • Protocol
  • First Online:
Book cover Light Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1563))

Abstract

Fluorescence recovery after photobleaching (FRAP) is a cutting-edge live-cell functional imaging technique that enables the exploration of protein dynamics in individual cells and thus permits the elucidation of protein mobility, function, and interactions at a single-cell level. During a typical FRAP experiment, fluorescent molecules in a defined region of interest within the cell are bleached by a short and powerful laser pulse, while the recovery of the fluorescence in the region is monitored over time by time-lapse microscopy. FRAP experimental setup and image acquisition involve a number of steps that need to be carefully executed to avoid technical artifacts. Equally important is the subsequent computational analysis of FRAP raw data, to derive quantitative information on protein diffusion and binding parameters. Here we present an integrated in vivo and in silico protocol for the analysis of protein kinetics using FRAP. We focus on the most commonly encountered challenges and technical or computational pitfalls and their troubleshooting so that valid and robust insight into protein dynamics within living cells is gained.

*These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Lippincott-Schwartz J, Patterson GH (2003) Development and use of fluorescent protein markers in living cells. Science 300(5616):87–91

    Article  CAS  PubMed  Google Scholar 

  2. Reits EAJ, Neefjes JJ (2001) From fixed to FRAP: measuring protein mobility and activity in living cells. Nat Cell Biol 3(6):145–145

    Article  Google Scholar 

  3. White J, Stelzer E (1999) Photobleaching GFP reveals protein dynamics inside live cells. Trends Cell Biol 9(2):61–65

    Article  CAS  PubMed  Google Scholar 

  4. Phair RD, Misteli T (2001) Kinetic modelling approaches to in vivo imaging. Nat Rev Mol Cell Biol 2(12):898–907

    Article  CAS  PubMed  Google Scholar 

  5. Bancaud A, Huet S, Rabut G et al (2010) Fluorescence perturbation techniques to study mobility and molecular dynamics of proteins in live cells: FRAP, photoactivation, photoconversion, and FLIP. Cold Spring Harb Protoc 2010(12):pdb.top90

    Article  PubMed  Google Scholar 

  6. Beaudouin J, Mommer MS, Bock HG et al (2013) Experiment setups and parameter estimation in fluorescence recovery after photobleaching experiments: a review of current practice. In: Bock H G, Carraro T, Jäger W et al (eds) Model based parameter estimation. Springer, Berlin Heidelberg

    Google Scholar 

  7. Rapsomaniki MA, Kotsantis P, Symeonidou IE et al (2012) easyFRAP: an interactive, easy-to-use tool for qualitative and quantitative analysis of FRAP data. Bioinformatics 28(13):1800–1801

    Article  CAS  PubMed  Google Scholar 

  8. Phair RD, Gorski SA, Misteli T (2003) Measurement of dynamic protein binding to chromatin in vivo, using photobleaching microscopy. Methods Enzymol 37:393–414

    Article  Google Scholar 

  9. Ellenberg J (1997) Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J Cell Biol 138(6):1193–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mueller F, Mazza D, Stasevich TJ et al (2010) FRAP and kinetic modeling in the analysis of nuclear protein dynamics: what do we really know? Curr Opin Cell Biol 22(3):403–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sprague BL, McNally JG (2005) FRAP analysis of binding: proper and fitting. Trends Cell Biol 15(2):84–91

    Article  CAS  PubMed  Google Scholar 

  12. Carrero G, McDonald D, Crawford E et al (2003) Using FRAP and mathematical modeling to determine the in vivo kinetics of nuclear proteins. Methods 29(1):14–28

    Article  CAS  PubMed  Google Scholar 

  13. Beaudouin J, Mora-Bermúdez F, Klee T et al (2006) Dissecting the contribution of diffusion and interactions to the mobility of nuclear proteins. Biophys J 90(6):1878–1894

    Article  CAS  PubMed  Google Scholar 

  14. Sprague BL, Pego RL, Stavreva DA et al (2004) Analysis of binding reactions by fluorescence recovery after photobleaching. Biophys J 86(6):3473–3495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Royen ME, Farla P, Mattern KA et al (2012) Fluorescence recovery after photobleaching (FRAP) to study nuclear protein dynamics in living cells. In: Hancock R (ed) The nucleus: chromatin, transcription, envelope, proteins, dynamics, and imaging, vol 2. Humana Press, New York, pp 2363–2385

    Google Scholar 

  16. Schaff JC, Cowan AE, Loew LM, Moraru II (2009) Virtual FRAP - an experiment-oriented simulation tool. Biophys J 96(3 Supplement 1):30

    Article  Google Scholar 

  17. Cinquemani E, Roukos V, Lygerou Z, and Lygeros J (2008) Numerical analysis of FRAP experiments for DNA replication and repair. Proceedings of the 47th IEEE conference on decision and control. Cancun, Mexico pp. 155–160

    Google Scholar 

  18. Farla P, Hersmus R, Geverts B, Mari PO, Nigg AL, Dubbink HJ, Trapman J, Houtsmuller AB (2004) The androgen receptor ligand-binding domain stabilizes DNA binding in living cells. J Struct Biol 147(1):50–61

    Article  CAS  PubMed  Google Scholar 

  19. Geverts B, van Royen ME, Houtsmuller AB (2015) Analysis of biomolecular dynamics by FRAP and Computer Simulation. In: PJ V (ed) Advanced Fluorescence Microscopy, vol 1251. Springer, New York, pp 109–133

    Google Scholar 

  20. Rapsomaniki MA, Cinquemani E, Giakoumakis NN et al (2015) Inference of protein kinetics by stochastic modeling and simulation of fluorescence recovery after photobleaching experiments. Bioinformatics 31(3):355–362

    Article  CAS  PubMed  Google Scholar 

  21. Mazza D, Abernathy A, Golob N et al (2012) A benchmark for chromatin binding measurements in live cells. Nucleic Acids Res 40(15):e119 p. gks70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cole R (2014) Live-cell imaging: The cell’s perspective. Cell Adh Migr 8(5):452–459

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hagen GM, Caarls W, Lidke KA et al (2009) FRAP and photoconversion in multiple arbitrary regions of interest using a programmable array microscope (PAM). Microsc Res Tech 72(6):431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xouri G, Squire A, Dimaki M et al (2007) Cdt1 associates dynamically with chromatin throughout G1 and recruits geminin onto chromatin. EMBO J 26(5):1303–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Roukos V, Kinkhabwala A, Colombelli J et al (2011) Dynamic recruitment of licensing factor Cdt1 to sites of DNA damage. J Cell Sci 124(3):422–434

    Article  CAS  PubMed  Google Scholar 

  26. Symeonidou IE, Kotsantis P, Roukos V et al (2013) Multi-step loading of human minichromosome maintenance proteins in live human cells. J Biol Chem 288(50):35852–35867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kourti M, Ikonomou G, Giakoumakis NN et al (2015) CK1δ restrains lipin-1 induction, lipid droplet formation and cell proliferation under hypoxia by reducing HIF-1α/ARNT complex formation. Cell Signal 27(6):129–1140

    Article  Google Scholar 

  28. Rapsomaniki MA (2014) Applications of stochastic hybrid models in biological systems. University of Patras, Doctoral dissertation

    Google Scholar 

  29. Halavatyi A (2008) Mathematical model and software FRAPAnalyser for analysis of actin-cytoskeleton dynamics with FRAP experiments, in Proceedings of FEBS/ECF workshop. Potsdam, Germany

    Google Scholar 

  30. Kota M (2011) Analysis of FRAP curves, online available via EMBL: http://cmci.embl.de/documents/frapmanu. Accessed 05 May 2011

  31. Vakaloglou KM, Chrysanthis G, Rapsomaniki MA et al (2016) IPP complex reinforces adhesion by relaying tension-dependent signals to inhibit integrin turnover. Cell Rep 14(11):2668–2682

    Article  CAS  PubMed  Google Scholar 

  32. Soumpasis DM (1983) Theoretical analysis of fluorescence photobleaching recovery experiments. Biophys J 41(1):95–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Axelrod D, Koppel DE, Schlessinger J et al (1976) Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 16(9):1055–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Frigault MM, Lacoste J, Swift JL, Brown CM (2009) Live-cell microscopy–tips and tools. J Cell Sci 122(6):753–767

    Article  CAS  PubMed  Google Scholar 

  35. Dickson RM, Cubitt AB et al (1997) On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388(6640):355–358

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Advanced Light Microscopy Facility of the University of Patras for assistance with live-cell imaging experiments and all members of the Cell Cycle and Stem Cell labs, Medical School, University of Patras for helpful discussions.

Work in our lab is supported by a grant from the European Research Council (DYNACOM, 281851).

Appendix

Let y(t)ROI1, y(t)ROI2, and y(t)ROI3 represent the fluorescence intensity in the bleaching region, the total area of fluorescence, and a random background area. Background correction is performed by simply subtracting the background measurements from the rest:

$$ \begin{array}{c} y{(t)}_{ROI1*}= y(t){}_{ROI1}- y(t){}_{ROI3}\\ {} y{(t)}_{ROI2*}= y(t){}_{ROI2}- y(t){}_{ROI3}\end{array} $$

Let \( {y}_{ROI1}^{pre} \) denote the average intensity in the bleaching region during the pre-bleach interval and t bleach + 1 denote the first time point after the bleach. Bleaching depth (bd) is computed as follows:

\( bd=\frac{y_{ROI1}^{pre}- y{\left({t}_{\mathrm{bleach}+1}\right)}_{ROI1*}}{y_{ROI1}^{pre}} \) (1)

Similarly, let \( {y}_{ROI2}^{pre},{y}_{ROI2}^{\mathrm{post}} \) denote the average intensities in the total area of fluorescence during the pre- and post-bleach interval respectively. Gap ratio (gr) is computed as follows:

\( gr=\frac{y_{ROI2}^{\mathrm{post}}}{y_{ROI2}^{pre}} \) (2)

Double normalization is computed as follows:

\( y{(t)}_{\mathrm{double}}=\frac{y{(t)}_{ROI1*}}{y_{ROI1}^{pre}}\times \frac{y_{ROI2}^{pre}}{\mathrm{y}{(t)}_{ROI2*}} \) (3)

Similarly, full-scale normalization is computed as follows:

\( y{(t)}_{\mathrm{fullscale}}=\frac{y{(t)}_{\mathrm{double}}- y{\left({t}_{\mathrm{bleach}+1}\right)}_{\mathrm{double}}}{1- y{\left({t}_{\mathrm{bleach}+1}\right)}_{\mathrm{double}}} \) (4)

To compute quantitative parameters such as t-half (t 1/2) and mobile fraction (F mob ), only the post-bleach part of the curve is necessary. Dropping normalization index for simplicity, let y(t end) denote the normalized intensity (double or full-scale) when the curve has reached its plateau and y(t bleach + 1) denote the first post-bleach measurement. To remove the pre-bleach part of the curve from the measurements, we simply subtract t bleach + 1 from the rest of the time points, leading to y(t bleach + 1) = y(t = 0). It is:

\( {F}_{mob}=\frac{y\left({t}_{end}\right)- y\left( t=0\right)}{1- y\left( t=0\right)} \) (5)

Immobile fraction (F imm) is defined as the fraction of bleached molecules that were bound and do not diffuse away from the bleaching area by the end of the experiment. It is:

\( {F}_{imm}=\frac{1- y\left({t}_{end}\right)}{1- y\left( t=0\right)} \) (6)

Naturally, F mob + F imm = 1. It is clear that for curves that exhibit full recovery, y(t end) = 1, leading to F imm = 0 and F imm = 1.

The value of t 1/2 is computed as follows:

\( y\left({t}_{1/2}\right)=\frac{y\left({t}_{end}\right)+ y\left( t=0\right)}{2} \) (7)

To estimate the values of these parameters, the experimental data are fitted to one of the following exponential equations:

y(t)single = y 0αe βt(8)

y(t)double = y 0αe βtγe δt(9)

If full-scale normalization was used, then it is: y(t = 0) = 0 and from Eq. (5) it is F mob = y(t end) = y 0, since for both Eqs. (8) and (9) as t → ∞,  y(t end) = y 0. For double normalization, we have:

  1. 1.

    Using single exponential fitting (Eq. (8)) it is y(t = 0)single = y 0a,and from Eq. (5) it is:

$$ {F}_{mob}=\frac{y_0-{y}_0+ a}{1-{y}_0+ a}=\frac{a}{1-{y}_0+ a} $$
  1. 2.

    Using double exponential fitting (Eq. (9)) it is y(t = 0)double = y 0aγ, and again from Eq. (5) it is:

$$ {F}_{mob}=\frac{y_0-{y}_0+ a+\gamma}{1-{y}_0+ a+\gamma}=\frac{a+\gamma}{1-{y}_0+ a+\gamma} $$

The value of t 1/2 is estimated from Eq. (7) as follows:

  1. 1.

    Using single exponential fitting and since similarly as above y(t = 0)single = y 0a

$$ \begin{array}{c}\frac{y_0+{y}_0- a}{2}={y}_0-\alpha {e}^{-\beta {t}_{1/2}}\\ {}{e}^{-\beta {t}_{1/2}}=\frac{1}{2}\\ {}{t}_{1/2}=\frac{ \ln 2}{\beta}\end{array} $$
  1. 2.

    Using a double exponential fitting equation, the value of t 1/2 is estimated numerically, since there is no closed form solution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoi Lygerou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Giakoumakis, N.N., Rapsomaniki, M.A., Lygerou, Z. (2017). Analysis of Protein Kinetics Using Fluorescence Recovery After Photobleaching (FRAP). In: Markaki, Y., Harz, H. (eds) Light Microscopy. Methods in Molecular Biology, vol 1563. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6810-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6810-7_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6808-4

  • Online ISBN: 978-1-4939-6810-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics