Skip to main content

Haplotyping of Heterozygous SNPs in Genomic DNA Using Long-Range PCR

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1551))

Abstract

To study meiotic recombination products, cis- or trans-association of disease polymorphisms, or allele-specific expression patterns, it is necessary to phase heterozygous polymorphisms separated by several kilobases. Haplotyping using long-range polymerase chain reaction (PCR) is a powerful, cost-effective method to directly obtain the phase of multiple heterozygous sites with standard laboratory equipment in a handful of loci for many samples. The method is based on the amplification of large genomic DNA regions (up to ~40 kb) with a reaction mixture that combines a proofreading polymerase with allele-specific primer pairs that preferentially amplify matched templates. The analysis of two heterozygous SNPs requires four reactions, each containing one of the four possible allele-specific primer combinations (two forward and two reverse primers), with the mismatches occurring at the 3′ ends of the primers. The two correct primer combinations will more efficiently elongate the matching alleles than the alternative alleles, and the difference in amplification efficiency can be monitored with real-time PCR.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Browning SR, Browning BL (2011) Haplotype phasing: existing methods and new developments. Nat Rev Genet 12(10):703–714. doi:10.1038/nrg3054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ruano G, Kidd KK, Stephens JC (1990) Haplotype of multiple polymorphisms resolved by enzymatic amplification of single DNA molecules. Proc Natl Acad Sci U S A 87(16):6296–6300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhao Z, Fu YX, Hewett-Emmett D, Boerwinkle E (2003) Investigating single nucleotide polymorphism (SNP) density in the human genome and its implications for molecular evolution. Gene 312:207–213

    Article  CAS  PubMed  Google Scholar 

  4. Newton CR, Graham A, Heptinstall LE, Powell SJ, Summers C, Kalsheker N, Smith JC, Markham AF (1989) Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res 17(7):2503–2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nichols WC, Liepnieks JJ, McKusick VA, Benson MD (1989) Direct sequencing of the gene for Maryland/German familial amyloidotic polyneuropathy type II and genotyping by allele-specific enzymatic amplification. Genomics 5(3):535–540

    Article  CAS  PubMed  Google Scholar 

  6. Okayama H, Curiel DT, Brantly ML, Holmes MD, Crystal RG (1989) Rapid, nonradioactive detection of mutations in the human genome by allele-specific amplification. J Lab Clin Med 114(2):105–113

    CAS  PubMed  Google Scholar 

  7. Wu DY, Ugozzoli L, Pal BK, Wallace RB (1989) Allele-specific enzymatic amplification of beta-globin genomic DNA for diagnosis of sickle cell anemia. Proc Natl Acad Sci U S A 86(8):2757–2760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ehlen T, Dubeau L (1989) Detection of ras point mutations by polymerase chain reaction using mutation-specific, inosine-containing oligonucleotide primers. Biochem Biophys Res Commun 160(2):441–447

    Article  CAS  PubMed  Google Scholar 

  9. Ruano G, Kidd KK (1989) Direct haplotyping of chromosomal segments from multiple heterozygotes via allele-specific PCR amplification. Nucleic Acids Res 17(20):8392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cheng S, Fockler C, Barnes WM, Higuchi R (1994) Effective amplification of long targets from cloned inserts and human genomic DNA. Proc Natl Acad Sci U S A 91(12):5695–5699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Barnes WM (1994) PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates. Proc Natl Acad Sci U S A 91(6):2216–2220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jia H, Guo Y, Zhao W, Wang K (2014) Long-range PCR in next-generation sequencing: comparison of six enzymes and evaluation on the MiSeq sequencer. Sci Rep 4:5737. doi:10.1038/srep05737

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Venturini G, Rose AM, Shah AZ, Bhattacharya SS, Rivolta C (2012) CNOT3 is a modifier of PRPF31 mutations in retinitis pigmentosa with incomplete penetrance. PLoS Genet 8(11), e1003040. doi:10.1371/journal.pgen.1003040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Michalatos-Beloin S, Tishkoff SA, Bentley KL, Kidd KK, Ruano G (1996) Molecular haplotyping of genetic markers 10 kb apart by allele-specific long-range PCR. Nucleic Acids Res 24(23):4841–4843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gaudet M, Fara AG, Beritognolo I, Sabatti M (2009) Allele-specific PCR in SNP genotyping. Methods Mol Biol 578:415–424. doi:10.1007/978-1-60327-411-1_26

    Article  CAS  PubMed  Google Scholar 

  16. Tiemann-Boege I, Calabrese P, Cochran DM, Sokol R, Arnheim N (2006) High-resolution recombination patterns in a region of human chromosome 21 measured by sperm typing. PLoS Genet 2(5):e70. doi:10.1371/journal.pgen.0020070

    Article  PubMed  PubMed Central  Google Scholar 

  17. Arbeithuber B, Betancourt AJ, Ebner T, Tiemann-Boege I (2015) Crossovers are associated with mutation and biased gene conversion at recombination hotspots. Proc Natl Acad Sci U S A 112(7):2109–2114. doi:10.1073/pnas.1416622112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. de Noronha CM, Mullins JI (1992) Amplimers with 3'-terminal phosphorothioate linkages resist degradation by vent polymerase and reduce Taq polymerase mispriming. PCR Methods Appl 2(2):131–136

    Article  PubMed  Google Scholar 

  19. Higuchi R, Dollinger G, Walsh PS, Griffith R (1992) Simultaneous amplification and detection of specific DNA sequences. Biotechnology (N Y) 10(4):413–417

    Article  CAS  Google Scholar 

  20. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230(4732):1350–1354

    Article  CAS  PubMed  Google Scholar 

  21. Aaij C, Borst P (1972) The gel electrophoresis of DNA. Biochim Biophys Acta 269(2):192–200

    Article  CAS  PubMed  Google Scholar 

  22. Gregson S (1972) Polyacrylamide gel electrophoresis of DNA. Anal Biochem 48(2):613–616

    Article  CAS  PubMed  Google Scholar 

  23. Ponchel F, Toomes C, Bransfield K, Leong FT, Douglas SH, Field SL, Bell SM, Combaret V, Puisieux A, Mighell AJ, Robinson PA, Inglehearn CF, Isaacs JD, Markham AF (2003) Real-time PCR based on SYBR-Green I fluorescence: an alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions. BMC Biotechnol 3:18. doi:10.1186/1472-6750-3-18

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ririe KM, Rasmussen RP, Wittwer CT (1997) Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem 245(2):154–160. doi:10.1006/abio.1996.9916

    Article  CAS  PubMed  Google Scholar 

  25. Wang W, Chen K, Xu C (2006) DNA quantification using EvaGreen and a real-time PCR instrument. Anal Biochem 356(2):303–305. doi:10.1016/j.ab.2006.05.027

    Article  CAS  PubMed  Google Scholar 

  26. Fan W, Waymire KG, Narula N, Li P, Rocher C, Coskun PE, Vannan MA, Narula J, Macgregor GR, Wallace DC (2008) A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations. Science 319(5865):958–962. doi:10.1126/science.1147786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Meyer WK, Arbeithuber B, Ober C, Ebner T, Tiemann-Boege I, Hudson RR, Przeworski M (2012) Evaluating the evidence for transmission distortion in human pedigrees. Genetics 191(1):215–232. doi:10.1534/genetics.112.139576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Owczarzy R, Tataurov AV, Wu Y, Manthey JA, McQuisten KA, Almabrazi HG, Pedersen KF, Lin Y, Garretson J, McEntaggart NO, Sailor CA, Dawson RB, Peek AS (2008) IDT SciTools: a suite for analysis and design of nucleic acid oligomers. Nucleic Acids Res 36(Web Server issue):W163–W169. doi:10.1093/nar/gkn198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134. doi:10.1186/1471-2105-13-134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kramer MF, Coen DM (2001) Enzymatic amplification of DNA by PCR: standard procedures and optimization. Curr Protoc Immunol Chapter 10:Unit 10.20. doi:10.1002/0471142735.im1020s24

Download references

Acknowledgements

This work was supported by the “Austrian Science Fund” (FWF) P25525-B13 and P23811-B12 to I.T-B., and DOC Fellowships of the Austrian Academy of Sciences to B.A. and A.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Tiemann-Boege .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Arbeithuber, B., Heissl, A., Tiemann-Boege, I. (2017). Haplotyping of Heterozygous SNPs in Genomic DNA Using Long-Range PCR. In: Tiemann-Boege, I., Betancourt, A. (eds) Haplotyping. Methods in Molecular Biology, vol 1551. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6750-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6750-6_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6748-3

  • Online ISBN: 978-1-4939-6750-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics