Skip to main content
Book cover

Zebrafish pp 207–223Cite as

Live Imaging of Host–Pathogen Interactions in Zebrafish Larvae

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1451))

Abstract

Zebrafish larvae are a powerful platform for studying the innate immune response to infection. The small size and optical transparency of larval zebrafish allow for multiple subject, multidimensional, and longitudinal imaging experiments. This chapter describes protocols for infecting zebrafish larvae with their natural pathogen Mycobacterium marinum, rapid short-term imaging, long-term extended imaging, and drug treatment assays. These protocols can be easily adapted to image and manipulate host interactions with other pathogens.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Rauta PR, Nayak B, Das S (2012) Immune system and immune responses in fish and their role in comparative immunity study: a model for higher organisms. Immunol Lett 148(1):23–33. doi:10.1016/j.imlet.2012.08.003

    Article  CAS  PubMed  Google Scholar 

  2. Lam SH, Chua HL, Gong Z, Lam TJ, Sin YM (2004) Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. Dev Comp Immunol 28(1):9–28

    Article  CAS  PubMed  Google Scholar 

  3. Patton EE, Zon LI (2001) The art and design of genetic screens: zebrafish. Nat Rev Genet 2(12):956–966. doi:10.1038/35103567

    Article  CAS  PubMed  Google Scholar 

  4. Peterson RT, Fishman MC (2011) Designing zebrafish chemical screens. Methods Cell Biol 105:525–541. doi:10.1016/B978-0-12-381320-6.00023-0

    Article  CAS  PubMed  Google Scholar 

  5. Stinear TP, Seemann T, Harrison PF, Jenkin GA, Davies JK, Johnson PD, Abdellah Z, Arrowsmith C, Chillingworth T, Churcher C, Clarke K, Cronin A, Davis P, Goodhead I, Holroyd N, Jagels K, Lord A, Moule S, Mungall K, Norbertczak H, Quail MA, Rabbinowitsch E, Walker D, White B, Whitehead S, Small PL, Brosch R, Ramakrishnan L, Fischbach MA, Parkhill J, Cole ST (2008) Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis. Genome Res 18(5):729–741. doi:10.1101/gr.075069.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tobin DM, Ramakrishnan L (2008) Comparative pathogenesis of Mycobacterium marinum and Mycobacterium tuberculosis. Cell Microbiol 10(5):1027–1039. doi:10.1111/j.1462-5822.2008.01133.x

    Article  CAS  PubMed  Google Scholar 

  7. Cronan MR, Tobin DM (2014) Fit for consumption: zebrafish as a model for tuberculosis. Dis Model Mech 7(7):777–784. doi:10.1242/dmm.016089

    Article  PubMed  PubMed Central  Google Scholar 

  8. Oehlers SH, Cronan MR, Scott NR, Thomas MI, Okuda KS, Walton EM, Beerman RW, Crosier PS, Tobin DM (2015) Interception of host angiogenic signalling limits mycobacterial growth. Nature 517(7536):612–615. doi:10.1038/nature13967

    Article  CAS  PubMed  Google Scholar 

  9. Cosma CL, Klein K, Kim R, Beery D, Ramakrishnan L (2006) Mycobacterium marinum Erp is a virulence determinant required for cell wall integrity and intracellular survival. Infect Immun 74(6):3125–3133. doi:10.1128/IAI.02061-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Volkman HE, Clay H, Beery D, Chang JC, Sherman DR, Ramakrishnan L (2004) Tuberculous granuloma formation is enhanced by a mycobacterium virulence determinant. PLoS Biol 2(11):e367. doi:10.1371/journal.pbio.0020367

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tobin DM, Vary JC Jr, Ray JP, Walsh GS, Dunstan SJ, Bang ND, Hagge DA, Khadge S, King MC, Hawn TR, Moens CB, Ramakrishnan L (2010) The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell 140(5):717–730. doi:10.1016/j.cell.2010.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Auer TO, Duroure K, De Cian A, Concordet JP, Del Bene F (2014) Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res 24(1):142–153. doi:10.1101/gr.161638.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Irion U, Krauss J, Nusslein-Volhard C (2014) Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system. Development. doi:10.1242/dev.115584

    PubMed  PubMed Central  Google Scholar 

  14. Jao LE, Wente SR, Chen W (2013) Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci U S A 110(34):13904–13909. doi:10.1073/pnas.1308335110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shin J, Chen J, Solnica-Krezel L (2014) Efficient homologous recombination-mediated genome engineering in zebrafish using TALE nucleases. Development 141(19):3807–3818. doi:10.1242/dev.108019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Takaki K, Davis JM, Winglee K, Ramakrishnan L (2013) Evaluation of the pathogenesis and treatment of Mycobacterium marinum infection in zebrafish. Nat Protoc 8(6):1114–1124. doi:10.1038/nprot.2013.068

    Article  PubMed  PubMed Central  Google Scholar 

  17. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. doi:10.1038/nmeth.2089

    Article  CAS  PubMed  Google Scholar 

  18. Astin JW, Jamieson SM, Eng TC, Flores MV, Misa JP, Chien A, Crosier KE, Crosier PS (2014) An in vivo antilymphatic screen in zebrafish identifies novel inhibitors of mammalian lymphangiogenesis and lymphatic-mediated metastasis. Mol Cancer Ther 13(10):2450–2462. doi:10.1158/1535-7163.MCT-14-0469-T

    Article  CAS  PubMed  Google Scholar 

  19. Yeh JR, Munson KM (2010) Zebrafish small molecule screen in reprogramming/cell fate modulation. Methods Mol Biol 636:317–327. doi:10.1007/978-1-60761-691-7_20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ordas A, Raterink RJ, Jansen HJ, Cunningham F, Wiweger MI, Jong-Raadsen S, Bates RH, Barros D, Meijer AH, Vreeken RJ, Ballell-Pages L, Dirks RP, Hankemeier T, Spaink HP (2014) Testing tuberculosis drug efficacy in a zebrafish high-throughput translational medicine screen. Antimicrob Agents Chemother. doi:10.1128/AAC.03588-14

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dana Sisk for expert management of our zebrafish facility and Rebecca Beerman, Mark Cronan, and Kevin Takaki for technical advice. This work was supported by funding from a National Science Foundation Graduate Research Fellowship (M.A.M.), an Australian National Health and Medical Research Council CJ Martin Early Career Fellowship (S.H.O.), and a Mallinckrodt Scholar Award, a Searle Scholar Award, a Vallee Foundation Young Investigator Award, an NIH Director’s New Innovator Award (1DP2-OD008614), and the Duke University Center for AIDS Research, a National Institutes of Health (NIH)-funded program (5P30 AI064518) (D.M.T.). The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Tobin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Matty, M.A., Oehlers, S.H., Tobin, D.M. (2016). Live Imaging of Host–Pathogen Interactions in Zebrafish Larvae. In: Kawakami, K., Patton, E., Orger, M. (eds) Zebrafish. Methods in Molecular Biology, vol 1451. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3771-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3771-4_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3769-1

  • Online ISBN: 978-1-4939-3771-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics