Skip to main content

Systems Analysis for Interpretation of Phosphoproteomics Data

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1355))

Abstract

Global phosphoproteomics investigations yield overwhelming datasets with up to tens of thousands of quantified phosphosites. The main challenge after acquiring such large-scale data is to extract the biological meaning and relate this to the experimental question at hand. Systems level analysis provides the best means for extracting functional insights from such types of datasets, and this has primed a rapid development of bioinformatics tools and resources over the last decade. Many of these tools are specialized databases that can be mined for annotation and pathway enrichment, whereas others provide a platform to generate functional protein networks and explore the relations between proteins of interest. The use of these tools requires careful consideration with regard to the input data, and the interpretation demands a critical approach. This chapter provides a summary of the most appropriate tools for systems analysis of phosphoproteomics datasets, and the considerations that are critical for acquiring meaningful output.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Suderman M, Hallett M (2007) Tools for visually exploring biological networks. Bioinformatics 23(20):2651–9

    Article  CAS  PubMed  Google Scholar 

  2. Gehlenborg N et al (2010) Visualization of omics data for systems biology. Nat Methods 7(3 Suppl):S56–68

    Article  CAS  PubMed  Google Scholar 

  3. da Huang W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13

    Article  PubMed Central  Google Scholar 

  4. Schnoes AM et al (2013) Biases in the experimental annotations of protein function and their effect on our understanding of protein function space. PLoS Comput Biol 9(5), e1003063

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Ashburner M et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25(1):25–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Croft D et al (2014) The Reactome pathway knowledgebase. Nucleic Acids Res 42(Database issue):D472–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Dennis G Jr et al (2003) DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 4(5):P3

    Article  PubMed  Google Scholar 

  9. Finn RD et al (2014) Pfam: the protein families database. Nucleic Acids Res 42(Database issue):D222–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Schultz J et al (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 95(11):5857–64

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Barabasi AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12(1):56–68

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. von Stechow L, van de Water B, Danen EH (2013) Unraveling DNA damage response-signaling networks through systems approaches. Arch Toxicol 87(9):1635–48

    Article  Google Scholar 

  13. Szklarczyk D et al (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39(Database issue):D561–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Franceschini A et al (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41(Database issue):D808–15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Jensen LJ et al (2009) STRING 8–a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 37(Database issue):D412–6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Shannon P et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Licata L et al (2012) MINT, the molecular interaction database: 2012 update. Nucleic Acids Res 40(Database issue):D857–61

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Gao J et al (2009) Integrating and annotating the interactome using the MiMI plugin for cytoscape. Bioinformatics 25(1):137–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4:2

    Article  PubMed Central  PubMed  Google Scholar 

  20. Ideker T et al (2002) Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18(Suppl 1):S233–40

    Article  PubMed  Google Scholar 

  21. Bindea G et al (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25(8):1091–3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Bindea G, Galon J, Mlecnik B (2013) CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics 29(5):661–3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21(16):3448–9

    Article  CAS  PubMed  Google Scholar 

  24. Wu G, Feng X, Stein L (2010) A human functional protein interaction network and its application to cancer data analysis. Genome Biol 11(5):R53

    Article  PubMed Central  PubMed  Google Scholar 

  25. Wu G, Stein L (2012) A network module-based method for identifying cancer prognostic signatures. Genome Biol 13(12):R112

    Article  PubMed Central  PubMed  Google Scholar 

  26. Schneider TD, Stephens RM (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18(20):6097–100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Colaert N et al (2009) Improved visualization of protein consensus sequences by iceLogo. Nat Methods 6(11):786–7

    Article  CAS  PubMed  Google Scholar 

  28. Lynn DJ et al (2008) InnateDB: facilitating systems-level analyses of the mammalian innate immune response. Mol Syst Biol 4:218

    Article  PubMed Central  PubMed  Google Scholar 

  29. Okuda S et al (2008) KEGG Atlas mapping for global analysis of metabolic pathways. Nucleic Acids Res 36(Web Server issue):W423–6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Zeeberg BR et al (2003) GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol 4(4):R28

    Article  PubMed Central  PubMed  Google Scholar 

  31. Hu Z et al (2009) VisANT 3.5: multi-scale network visualization, analysis and inference based on the gene ontology. Nucleic Acids Res 37(Web Server issue):W115–21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Baitaluk M et al (2006) BiologicalNetworks: visualization and analysis tool for systems biology. Nucleic Acids Res 34(Web Server issue):W466–71

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Junker BH, Klukas C, Schreiber F (2006) VANTED: a system for advanced data analysis and visualization in the context of biological networks. BMC Bioinformatics 7:109

    Article  PubMed Central  PubMed  Google Scholar 

  34. Kutmon M et al (2013) CyTargetLinker: a cytoscape app to integrate regulatory interactions in network analysis. PLoS One 8(12), e82160

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank members of the Proteomics Program at the Novo Nordisk Foundation Center for Protein Research (CPR) for critical input on the protocol. Work at CPR is funded in part by a generous donation from the Novo Nordisk Foundation (Grant number NNF14CC0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesper V. Olsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Munk, S., Refsgaard, J.C., Olsen, J.V. (2016). Systems Analysis for Interpretation of Phosphoproteomics Data. In: von Stechow, L. (eds) Phospho-Proteomics. Methods in Molecular Biology, vol 1355. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3049-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3049-4_23

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3048-7

  • Online ISBN: 978-1-4939-3049-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics