Skip to main content

SPLIFF: A Single-Cell Method to Map Protein-Protein Interactions in Time and Space

  • Protocol
Single Cell Protein Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1346))

Abstract

Protein interactions occur at certain times and at specific cellular places. The past years have seen a massive accumulation of binary protein-protein interaction data. The rapid increase of this context-free information necessitates robust methods to monitor protein interactions with temporal and spatial resolution in single cells. We have developed a simple split-ubiquitin-based method (SPLIFF) that uses the ratio of two fluorescent reporters as a signal for protein-protein interactions. One protein of the pair of interest is attached to the linear fusion of mCherry, the C-terminal half of ubiquitin, and GFP (mCherry-Cub-GFP). The other potential binding partner is expressed as a C-terminal fusion to the N-terminal half of ubiquitin (Nub). Upon co-expression the interaction between the two proteins of interest induces the reassociation of Nub and Cub to the native-like ubiquitin. GFP is subsequently cleaved from the C-terminus of Cub and degraded whereas the red-fluorescent mCherry stays attached to the Cub-fusion protein. We first implemented this method in the model yeast Saccharomyces cerevisiae. One fusion protein is expressed in cells of the a-mating type and the complementary fusion protein in cells of the α-mating type. Upon mixing, both cell types fuse and the Nub- and Cub-fusion proteins are free to interact. The red and green fluorescence is monitored by two-channel fluorescence time-lapse microcopy. The moment of cell fusion defines the start of the analysis. The calculated ratio of green to red fluorescence allows mapping the spatiotemporal interaction profiles of the investigated proteins in single cells.

*These authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stynen B, Tournu H, Tavernier J, Van Dijck P (2012) Diversity in genetic in vivo methods for protein-protein interaction studies: from the yeast two-hybrid system to the mammalian split-luciferase system. Microbiol Mol Biol Rev 76:331–382

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Müller J, Johnsson N (2008) Split-ubiquitin and the split-protein sensors: chessman for the endgame. Chembiochem 9:2029–2038

    Article  PubMed  Google Scholar 

  3. Johnsson N, Varshavsky A (1994) Split ubiquitin as a sensor of protein interactions in vivo. Proc Natl Acad Sci U S A 91:10340–10344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Stagljar I, Korostensky C, Johnsson N, te Heesen S (1998) A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc Natl Acad Sci U S A 95:5187–5192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Wittke S, Lewke N, Müller S, Johnsson N (1999) Probing the molecular environment of membrane proteins in vivo. Mol Biol Cell 10:2519–2530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Tafelmeyer P, Johnsson N, Johnsson K (2004) Transforming a (beta/alpha)8—barrel enzyme into a split-protein sensor through directed evolution. Chem Biol 11:681–689

    CAS  PubMed  Google Scholar 

  7. Ear PH, Michnick SW (2009) A general life-death selection strategy for dissecting protein functions. Nat Methods 6:813–816

    Article  CAS  PubMed  Google Scholar 

  8. Moreno D, Neller J, Kestler HA, Kraus J, Dünkler A, Johnsson N (2013) A fluorescent reporter for mapping cellular protein-protein interactions in time and space. Mol Syst Biol 9:647

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Johnsson N, Varshavsky A (1994) Ubiquitin-assisted dissection of protein transport across membranes. EMBO J 13:2686–2698

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Wittke S, Dünnwald M, Johnsson N (2000) Sec62p, a component of the endoplasmic reticulum protein translocation machinery, contains multiple binding sites for the Sec-complex. Mol Biol Cell 11:3859–3871

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Gao JT, Guimera R, Li H, Pinto IM, Sales-Pardo M, Wai SC, Rubinstein B, Li R (2011) Modular coherence of protein dynamics in yeast cell polarity system. Proc Natl Acad Sci U S A 108:7647–7652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Sheu YJ, Santos B, Fortin N, Costigan C, Snyder M (1998) Spa2p interacts with cell polarity proteins and signaling components involved in yeast cell morphogenesis. Mol Cell Biol 18:4053–4069

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Lippincott J, Li R (1998) Dual function of Cyk2, a cdc15/PSTPIP family protein, in regulating actomyosin ring dynamics and septin distribution. J Cell Biol 143:1947–1960

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Kiel C, Serrano L (2012) Challenges ahead in signal transduction: MAPK as an example. Curr Opin Biotechnol 23:305–314

    Article  CAS  PubMed  Google Scholar 

  15. Vidal M, Cusick ME, Barabasi AL (2011) Interactome networks and human disease. Cell 144:986–998

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Dünkler A, Müller J, Johnsson N (2012) Detecting protein-protein interactions with the split-ubiquitin sensor. Methods Mol Biol 786:115–130

    Article  PubMed  Google Scholar 

  17. Janke C, Magiera MM, Rathfelder N, Taxis C, Reber S, Maekawa H, Moreno-Borchart A, Doenges G, Schwob E, Schiebel E, Knop M (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21:947–962

    Article  CAS  PubMed  Google Scholar 

  18. Hruby A, Zapatka M, Heucke S, Rieger L, Wu Y, Nussbaumer U, Timmermann S, Dunkler A, Johnsson N (2011) A constraint network of interactions: protein-protein interaction analysis of the yeast type II phosphatase Ptc1p and its adaptor protein Nbp2p. J Cell Sci 124:35–46

    Article  CAS  PubMed  Google Scholar 

  19. Motulsky HJ, Ransnas LA (1987) Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J 1:365–374

    CAS  PubMed  Google Scholar 

  20. Lomax RG, Hahs-Vaughn DL (2012) Statistical concepts: a second course. Routledge Chapman & Hall, New York

    Google Scholar 

Download references

Acknowledgement

This work was supported by the BMBF Initiative SysTec (0315690B) and by the BMBF Initiative GerontoSys2 (SyStaR, 03158 94A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Johnsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Dünkler, A., Rösler, R., Kestler, H.A., Moreno-Andrés, D., Johnsson, N. (2015). SPLIFF: A Single-Cell Method to Map Protein-Protein Interactions in Time and Space. In: Singh, A., Chandrasekaran, A. (eds) Single Cell Protein Analysis. Methods in Molecular Biology, vol 1346. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2987-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2987-0_11

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2986-3

  • Online ISBN: 978-1-4939-2987-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics