Skip to main content

Generation of Transgenic Rodent Malaria Parasites Expressing Human Malaria Parasite Proteins

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1325))

Abstract

We describe methods for the rapid generation of transgenic rodent Plasmodium berghei (Pb) parasites that express human malaria parasite (HMP) proteins, using the recently developed GIMO-based transfection methodology. Three different genetic modifications are described resulting in three types of transgenic parasites. (1) Additional Gene (AG) mutants. In these mutants the HMP gene is introduced as an “additional gene” into a silent/neutral locus of the Pb genome under the control of either a constitutive or stage-specific Pb promoter. This method uses the GIMO-transfection protocol and AG mutants are generated by replacing the positive–negative selection marker (SM) hdhfr::yfcu cassette in a neutral locus of a standard GIMO mother line with the HMP gene expression cassette, resulting in SM free transgenic parasites. (2) Double-step Replacement (DsR) mutants. In these mutants the coding sequence (CDS) of the Pb gene is replaced with the CDS of the HMP ortholog in a two-step GIMO-transfection procedure. This process involves first the replacement of the Pb CDS with the hdhfr::yfcu SM, followed by insertion of the HMP ortholog at the same locus thereby replacing hdhfr::yfcu with the HMP CDS. These steps use the GIMO-transfection protocol, which exploits both positive selection for Pb orthologous gene-deletion and negative selection for HMP gene-insertion, resulting in SM free transgenic parasites. (3) Double-step Insertion (DsI) mutants. When a Pb gene is essential for blood stage development the DsR strategy is not possible. In these mutants the HMP expression cassette is first introduced into the neutral locus in a standard GIMO mother line as described for AG mutants but under the control elements of the Pb orthologous gene; subsequently, the Pb ortholog CDS is targeted for deletion through replacement of the Pb CDS with the hdhfr::yfcu SM, resulting in transgenic parasites with a new GIMO locus permissive for additional gene-insertion modifications.

The different types of transgenic parasites can be exploited to examine interactions of drugs/inhibitors or immune factors with HMP molecules in vivo. Mice either immunized with HMP-vaccines or treated with specific drugs can be infected/challenged with these transgenic mutants to evaluate drug or vaccine efficacy in vivo.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Carlton JM et al (2002) Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature 419(6906):512–519

    Article  CAS  PubMed  Google Scholar 

  2. Kooij TW, Janse CJ, Waters AP (2006) Plasmodium post-genomics: better the bug you know? Nat Rev Microbiol 4(5):344–357

    Article  CAS  PubMed  Google Scholar 

  3. Cockburn IA et al (2013) In vivo imaging of CD8+ T cell-mediated elimination of malaria liver stages. Proc Natl Acad Sci U S A 110(22):9090–9095

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Lin JW et al (2011) A novel ‘gene insertion/marker out’ (GIMO) method for transgene expression and gene complementation in rodent malaria parasites. PLoS One 6(12), e29289

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Bauza K et al (2014) Efficacy of a Plasmodium vivax malaria vaccine using ChAd63 and modified vaccinia Ankara expressing thrombospondin-related anonymous protein as assessed with transgenic Plasmodium berghei parasites. Infect Immun 82(3):1277–1286

    Article  PubMed Central  PubMed  Google Scholar 

  6. Espinosa DA et al (2013) Development of a chimeric Plasmodium berghei strain expressing the repeat region of the P. vivax circumsporozoite protein for in vivo evaluation of vaccine efficacy. Infect Immun 81(8):2882–2887

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Persson C et al (2002) Cutting edge: a new tool to evaluate human pre-erythrocytic malaria vaccines: rodent parasites bearing a hybrid Plasmodium falciparum circumsporozoite protein. J Immunol 169(12):6681–6685

    Article  CAS  PubMed  Google Scholar 

  8. Goodman AL et al (2011) A viral vectored prime-boost immunization regime targeting the malaria Pfs25 antigen induces transmission-blocking activity. PLoS One 6(12), e29428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Ramjanee S et al (2007) The use of transgenic Plasmodium berghei expressing the Plasmodium vivax antigen P25 to determine the transmission-blocking activity of sera from malaria vaccine trials. Vaccine 25(5):886–894

    Article  CAS  PubMed  Google Scholar 

  10. Cao Y, Zhang D, Pan W (2009) Construction of transgenic Plasmodium berghei as a model for evaluation of blood-stage vaccine candidate of Plasmodium falciparum chimeric protein 2.9. PLoS One 4(9), e6894

    Article  PubMed Central  PubMed  Google Scholar 

  11. de Koning-Ward TF et al (2003) A new rodent model to assess blood stage immunity to the Plasmodium falciparum antigen merozoite surface protein 119 reveals a protective role for invasion inhibitory antibodies. J Exp Med 198(6):869–875

    Article  PubMed Central  PubMed  Google Scholar 

  12. Tewari R, Patzewitz EM, Poulin B, Stewart L, Baker DA (2014) Development of a transgenic Plasmodium berghei line (Pbpfpkg) expressing the P. falciparum cGMP-dependent protein kinase, a novel antimalarial drug target. PLoS One 9(5), e96923

    Article  PubMed Central  PubMed  Google Scholar 

  13. Blume M et al (2011) A constitutive pan-hexose permease for the Plasmodium life cycle and transgenic models for screening of antimalarial sugar analogs. FASEB J 25(4):1218–1229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Janse CJ, Ramesar J, Waters AP (2006) High-efficiency transfection and drug selection of genetically transformed blood stages of the rodent malaria parasite Plasmodium berghei. Nat Protoc 1(1):346–356

    Article  CAS  PubMed  Google Scholar 

  15. Janse CJ et al (2006) High efficiency transfection of Plasmodium berghei facilitates novel selection procedures. Mol Biochem Parasitol 145(1):60–70

    Article  CAS  PubMed  Google Scholar 

  16. Spaccapelo R et al (2010) Plasmepsin 4-deficient Plasmodium berghei are virulence attenuated and induce protective immunity against experimental malaria. Am J Pathol 176(1):205–217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Jacobs-Lorena VY, Mikolajczak SA, Labaied M, Vaughan AM, Kappe SH (2010) A dispensable Plasmodium locus for stable transgene expression. Mol Biochem Parasitol 171(1):40–44

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Sinden R (1997) Infection of mosquitoes with rodent malaria. In: Crampton J, Beard CB, Louis C (eds) The molecular biology of insect disease vectors. Springer, Netherlands, pp 67–91

    Chapter  Google Scholar 

  19. Orr RY, Philip N, Waters AP (2012) Improved negative selection protocol for Plasmodium berghei in the rodent malarial model. Malar J 11:103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Menard R, Janse C (1997) Gene targeting in malaria parasites. Methods 13(2):148–157

    Article  CAS  PubMed  Google Scholar 

  21. Janse CJ, Franke-Fayard B, Waters AP (2006) Selection by flow-sorting of genetically transformed, GFP-expressing blood stages of the rodent malaria parasite, Plasmodium berghei. Nat Protoc 1(2):614–623

    Article  CAS  PubMed  Google Scholar 

  22. Lin JW et al (2013) Screening inhibitors of P. berghei blood stages using bioluminescent reporter parasites. Methods Mol Biol 923:507–522

    Article  CAS  PubMed  Google Scholar 

  23. Janse CJ, Waters AP (1995) Plasmodium berghei: the application of cultivation and purification techniques to molecular studies of malaria parasites. Parasitol Today 11(4):138–143

    Article  CAS  PubMed  Google Scholar 

  24. Janse CJ et al (1985) In vitro formation of ookinetes and functional maturity of Plasmodium berghei gametocytes. Parasitology 91(Pt 1):19–29

    Article  PubMed  Google Scholar 

  25. van Dijk MR et al (2001) A central role for P48/45 in malaria parasite male gamete fertility. Cell 104(1):153–164

    Article  PubMed  Google Scholar 

  26. Ramakrishnan C et al (2013) Laboratory maintenance of rodent malaria parasites. Methods Mol Biol 923:51–72

    Article  CAS  PubMed  Google Scholar 

  27. Annoura T, Chevalley S, Janse CJ, Franke-Fayard B, Khan SM (2013) Quantitative analysis of Plasmodium berghei liver stages by bioluminescence imaging. Methods Mol Biol 923:429–443

    Article  CAS  PubMed  Google Scholar 

  28. Bruna-Romero O et al (2001) Detection of malaria liver-stages in mice infected through the bite of a single Anopheles mosquito using a highly sensitive real-time PCR. Int J Parasitol 31(13):1499–1502

    Article  CAS  PubMed  Google Scholar 

  29. Annoura T et al (2012) Assessing the adequacy of attenuation of genetically modified malaria parasite vaccine candidates. Vaccine 30(16):2662–2670

    Article  PubMed  Google Scholar 

  30. Ploemen IH et al (2009) Visualisation and quantitative analysis of the rodent malaria liver stage by real time imaging. PLoS One 4(11), e7881

    Article  PubMed Central  PubMed  Google Scholar 

  31. Kooij TW, Rauch MM, Matuschewski K (2012) Expansion of experimental genetics approaches for Plasmodium berghei with versatile transfection vectors. Mol Biochem Parasitol 185(1):19–26

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Ahmed M. Salman was supported by EVIMalaR’s (FP7) PhD Programme, Catherin Marin Mogollon by Colciencias Ph.D. fellowship (Call 568 from 2012 Resolution 01218 Bogotá, Colombia), and Jing-wen Lin by a MRC (UK) career development fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid M. Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Salman, A.M., Mogollon, C.M., Lin, Jw., van Pul, F.J.A., Janse, C.J., Khan, S.M. (2015). Generation of Transgenic Rodent Malaria Parasites Expressing Human Malaria Parasite Proteins. In: Vaughan, A. (eds) Malaria Vaccines. Methods in Molecular Biology, vol 1325. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2815-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2815-6_21

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2814-9

  • Online ISBN: 978-1-4939-2815-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics