Skip to main content

Cancer and the Nuclear Pore Complex

  • Chapter
  • First Online:
Book cover Cancer Biology and the Nuclear Envelope

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 773))

Abstract

The nuclear pore complex (NPC) mediates trafficking between the cytoplasm and nucleoplasm. It also plays key roles in other nuclear processes such as chromatin silencing, transcriptional regulation, and DNA damage repair. Nucleoporins, the structural components of the NPC, have been linked to a multitude of cancers through chromosomal translocations generating fusion proteins, changes in protein expression levels, and single point mutations. Only a small number of nucleoporins have been linked to tumorigenesis thus far, and these proteins—Nup62, Nup88, Nup98, Nup214, Nup358/RanBP2, and Tpr—line the trafficking pathway and are particularly associated with mRNA export. Overexpression of several associated nuclear export factors, most also involved in various stages of mRNA export, has been linked to cancers as well. Some oncogenic nucleoporin mutants are mislocalized to either the cytoplasm or nucleoplasm while others are incorporated into the NPC, and in all these cases they are thought to misregulate signaling pathways and transcription through either altered or diminished nucleoporin functionality. Intriguingly, many viruses target the same cancer-linked nucleoporins, often causing their degradation or mislocalization, implying that these viruses exploit some of the same weaknesses as the oncogenic defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

NPC:

Nuclear pore complex

NE:

Nuclear envelope

Tpr:

Translocated promoter region

NLS:

Nuclear localization signal

HGFR:

Hepatocyte growth factor receptor

NTrk1:

Neurotrophic tyrosine receptor kinase 1

FGFR1:

Fibroblast growth factor receptor 1

EMS:

8p11 myeloproliferative syndrome

AML:

Acute myeloid leukemia

AUL:

Acute undifferentiated leukemia

MDS:

Myelodysplastic syndrome

T-ALL:

T-cell acute lymphoblastic leukemia

IMT:

Inflammatory myofibroblastic tumor

Alk:

Anaplastic lymphoma kinase

B-ALL:

B-cell acute lymphoblastic leukemia

CML:

Chronic myelogenous leukemia

CMML:

Chronic myelomonocytic leukemia

JMML:

Juvenile myelomonocytic leukemia

eIF4E:

Eukaryotic initiation factor 4E

TMEV:

Theiler’s murine encephalomyelitis virus

VSV:

Vesicular stomatitis virus

HIV-1:

Human immunodeficiency virus

References

  1. Alber F, Dokudovskaya S, Veenhoff LM, Zhang W, Kipper J, Devos D, Suprapto A, Karni-Schmidt O, Williams R, Chait BT, Sali A, Rout MP (2007) The molecular architecture of the nuclear pore complex. Nature 450(7170):695–701. doi:10.1038/nature06405

    PubMed  CAS  Google Scholar 

  2. Bilokapic S, Schwartz TU (2012) 3D ultrastructure of the nuclear pore complex. Curr Opin Cell Biol 24(1):86–91. doi:10.1016/j.ceb.2011.12.011

    PubMed Central  PubMed  CAS  Google Scholar 

  3. Strambio-De-Castillia C, Niepel M, Rout MP (2010) The nuclear pore complex: bridging nuclear transport and gene regulation. Nat Rev Mol Cell Biol 11(7):490–501. doi:10.1038/nrm2928

    PubMed  CAS  Google Scholar 

  4. Raices M, D’Angelo MA (2012) Nuclear pore complex composition: a new regulator of tissue-specific and developmental functions. Nat Rev Mol Cell Biol 13(11):687–699. doi:10.1038/nrm3461

    PubMed  CAS  Google Scholar 

  5. Cronshaw JM, Krutchinsky AN, Zhang W, Chait BT, Matunis MJ (2002) Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol 158(5):915–927. doi:10.1083/jcb.200206106

    PubMed Central  PubMed  CAS  Google Scholar 

  6. D’Angelo MA, Hetzer MW (2008) Structure, dynamics and function of nuclear pore complexes. Trends Cell Biol 18(10):456–466. doi:10.1016/j.tcb.2008.07.009

    PubMed Central  PubMed  Google Scholar 

  7. Quimby BB, Lamitina T, L’Hernault SW, Corbett AH (2000) The mechanism of ran import into the nucleus by nuclear transport factor 2. J Biol Chem 275(37):28575–28582. doi:10.1074/jbc.M005055200

    PubMed  CAS  Google Scholar 

  8. Stewart M (2007) Ratcheting mRNA out of the nucleus. Mol Cell 25(3):327–330. doi:10.1016/j.molcel.2007.01.016

    PubMed  CAS  Google Scholar 

  9. Joseph J, Dasso M (2008) The nucleoporin Nup358 associates with and regulates interphase microtubules. FEBS Lett 582(2):190–196. doi:10.1016/j.febslet.2007.11.087

    PubMed Central  PubMed  CAS  Google Scholar 

  10. Cai Y, Singh BB, Aslanukov A, Zhao H, Ferreira PA (2001) The docking of kinesins, KIF5B and KIF5C, to Ran-binding protein 2 (RanBP2) is mediated via a novel RanBP2 domain. J Biol Chem 276(45):41594–41602. doi:10.1074/jbc.M104514200

    PubMed  CAS  Google Scholar 

  11. Singh BB, Patel HH, Roepman R, Schick D, Ferreira PA (1999) The zinc finger cluster domain of RanBP2 is a specific docking site for the nuclear export factor, exportin-1. J Biol Chem 274(52):37370–37378

    PubMed  CAS  Google Scholar 

  12. Akhtar A, Gasser SM (2007) The nuclear envelope and transcriptional control. Nat Rev Genet 8(7):507–517. doi:10.1038/nrg2122

    PubMed  CAS  Google Scholar 

  13. Nakano H, Funasaka T, Hashizume C, Wong RW (2010) Nucleoporin translocated promoter region (Tpr) associates with dynein complex, preventing chromosome lagging formation during mitosis. J Biol Chem 285(14):10841–10849. doi:10.1074/jbc.M110.105890

    PubMed Central  PubMed  CAS  Google Scholar 

  14. Towbin BD, Meister P, Gasser SM (2009) The nuclear envelope—a scaffold for silencing? Curr Opin Genet Dev 19(2):180–186. doi:10.1016/j.gde.2009.01.006

    PubMed  CAS  Google Scholar 

  15. Kalverda B, Pickersgill H, Shloma VV, Fornerod M (2010) Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell 140(3):360–371. doi:10.1016/j.cell.2010.01.011

    PubMed  CAS  Google Scholar 

  16. Capelson M, Hetzer MW (2009) The role of nuclear pores in gene regulation, development and disease. EMBO Rep 10(7):697–705. doi:10.1038/embor.2009.147

    PubMed Central  PubMed  CAS  Google Scholar 

  17. Xu S, Powers MA (2009) Nuclear pore proteins and cancer. Semin Cell Dev Biol 20(5):620–630. doi:10.1016/j.semcdb.2009.03.003

    PubMed Central  PubMed  CAS  Google Scholar 

  18. Gough SM, Slape CI, Aplan PD (2011) NUP98 gene fusions and hematopoietic malignancies: common themes and new biologic insights. Blood 118(24):6247–6257. doi:10.1182/blood-2011-07-328880

    PubMed Central  PubMed  CAS  Google Scholar 

  19. Franks TM, Hetzer MW (2013) The role of Nup98 in transcription regulation in healthy and diseased cells. Trends Cell Biol 23(3):112–117. doi:10.1016/j.tcb.2012.10.013

    PubMed Central  PubMed  CAS  Google Scholar 

  20. Kohler A, Hurt E (2010) Gene regulation by nucleoporins and links to cancer. Mol Cell 38(1):6–15. doi:10.1016/j.molcel.2010.01.040

    PubMed  Google Scholar 

  21. Chow KH, Factor RE, Ullman KS (2012) The nuclear envelope environment and its cancer connections. Nat Rev Cancer 12(3):196–209. doi:10.1038/nrc3219

    PubMed  CAS  Google Scholar 

  22. Simon DN, Wilson KL (2011) The nucleoskeleton as a genome-associated dynamic ‘network of networks’. Nat Rev Mol Cell Biol 12(11):695–708. doi:10.1038/nrm3207

    PubMed  CAS  Google Scholar 

  23. Krull S, Dorries J, Boysen B, Reidenbach S, Magnius L, Norder H, Thyberg J, Cordes VC (2010) Protein Tpr is required for establishing nuclear pore-associated zones of heterochromatin exclusion. EMBO J 29(10):1659–1673. doi:10.1038/emboj.2010.54

    PubMed Central  PubMed  CAS  Google Scholar 

  24. Ben-Efraim I, Frosst PD, Gerace L (2009) Karyopherin binding interactions and nuclear import mechanism of nuclear pore complex protein Tpr. BMC Cell Biol 10:74. doi:10.1186/1471-2121-10-74

    PubMed Central  PubMed  Google Scholar 

  25. Frosst P, Guan T, Subauste C, Hahn K, Gerace L (2002) Tpr is localized within the nuclear basket of the pore complex and has a role in nuclear protein export. J Cell Biol 156(4):617–630. doi:10.1083/jcb.200106046

    PubMed Central  PubMed  CAS  Google Scholar 

  26. Dieppois G, Iglesias N, Stutz F (2006) Cotranscriptional recruitment to the mRNA export receptor Mex67p contributes to nuclear pore anchoring of activated genes. Mol Cell Biol 26(21):7858–7870. doi:10.1128/MCB.00870-06

    PubMed Central  PubMed  CAS  Google Scholar 

  27. Galy V, Gadal O, Fromont-Racine M, Romano A, Jacquier A, Nehrbass U (2004) Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1. Cell 116(1):63–73

    PubMed  CAS  Google Scholar 

  28. Galy V, Olivo-Marin JC, Scherthan H, Doye V, Rascalou N, Nehrbass U (2000) Nuclear pore complexes in the organization of silent telomeric chromatin. Nature 403(6765):108–112. doi:10.1038/47528

    PubMed  CAS  Google Scholar 

  29. Lee SH, Sterling H, Burlingame A, McCormick F (2008) Tpr directly binds to Mad1 and Mad2 and is important for the Mad1-Mad2-mediated mitotic spindle checkpoint. Genes Dev 22(21):2926–2931. doi:10.1101/gad.1677208

    PubMed Central  PubMed  CAS  Google Scholar 

  30. Luthra R, Kerr SC, Harreman MT, Apponi LH, Fasken MB, Ramineni S, Chaurasia S, Valentini SR, Corbett AH (2007) Actively transcribed GAL genes can be physically linked to the nuclear pore by the SAGA chromatin modifying complex. J Biol Chem 282(5):3042–3049. doi:10.1074/jbc.M608741200

    PubMed  CAS  Google Scholar 

  31. Byrd DA, Sweet DJ, Pante N, Konstantinov KN, Guan T, Saphire AC, Mitchell PJ, Cooper CS, Aebi U, Gerace L (1994) Tpr, a large coiled coil protein whose amino terminus is involved in activation of oncogenic kinases, is localized to the cytoplasmic surface of the nuclear pore complex. J Cell Biol 127(6 Pt 1):1515–1526

    PubMed  CAS  Google Scholar 

  32. Bangs P, Burke B, Powers C, Craig R, Purohit A, Doxsey S (1998) Functional analysis of Tpr: identification of nuclear pore complex association and nuclear localization domains and a role in mRNA export. J Cell Biol 143(7):1801–1812

    PubMed Central  PubMed  CAS  Google Scholar 

  33. Cooper CS, Park M, Blair DG, Tainsky MA, Huebner K, Croce CM, Vande Woude GF (1984) Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature 311(5981):29–33

    PubMed  CAS  Google Scholar 

  34. Hays JL, Watowich SJ (2003) Oligomerization-induced modulation of TPR-MET tyrosine kinase activity. J Biol Chem 278(30):27456–27463. doi:10.1074/jbc.M210648200

    PubMed  CAS  Google Scholar 

  35. Park M, Dean M, Cooper CS, Schmidt M, O’Brien SJ, Blair DG, Vande Woude GF (1986) Mechanism of met oncogene activation. Cell 45(6):895–904

    PubMed  CAS  Google Scholar 

  36. Peschard P, Park M (2007) From Tpr-Met to Met, tumorigenesis and tubes. Oncogene 26(9):1276–1285. doi:10.1038/sj.onc.1210201

    PubMed  CAS  Google Scholar 

  37. Rodrigues GA, Park M (1993) Dimerization mediated through a leucine zipper activates the oncogenic potential of the met receptor tyrosine kinase. Mol Cell Biol 13(11):6711–6722

    PubMed Central  PubMed  CAS  Google Scholar 

  38. Soman NR, Correa P, Ruiz BA, Wogan GN (1991) The TPR-MET oncogenic rearrangement is present and expressed in human gastric carcinoma and precursor lesions. Proc Natl Acad Sci U S A 88(11):4892–4896

    PubMed Central  PubMed  CAS  Google Scholar 

  39. Yu J, Miehlke S, Ebert MP, Hoffmann J, Breidert M, Alpen B, Starzynska T, Stolte Prof M, Malfertheiner P, Bayerdorffer E (2000) Frequency of TPR-MET rearrangement in patients with gastric carcinoma and in first-degree relatives. Cancer 88(8):1801–1806

    PubMed  CAS  Google Scholar 

  40. Greco A, Miranda C, Pagliardini S, Fusetti L, Bongarzone I, Pierotti MA (1997) Chromosome 1 rearrangements involving the genes TPR and NTRK1 produce structurally different thyroid-specific TRK oncogenes. Genes Chromosomes Cancer 19(2):112–123

    PubMed  CAS  Google Scholar 

  41. Greco A, Miranda C, Pierotti MA (2010) Rearrangements of NTRK1 gene in papillary thyroid carcinoma. Mol Cell Endocrinol 321(1):44–49. doi:10.1016/j.mce.2009.10.009

    PubMed  CAS  Google Scholar 

  42. Pierotti MA, Greco A (2006) Oncogenic rearrangements of the NTRK1/NGF receptor. Cancer Lett 232(1):90–98. doi:10.1016/j.canlet.2005.07.043

    PubMed  CAS  Google Scholar 

  43. Li F, Zhai YP, Tang YM, Wang LP, Wan PJ (2012) Identification of a novel partner gene, TPR, fused to FGFR1 in 8p11 myeloproliferative syndrome. Genes Chromosomes Cancer 51(9):890–897. doi:10.1002/gcc.21973

    PubMed  CAS  Google Scholar 

  44. Alfonso P, Canamero M, Fernandez-Carbonie F, Nunez A, Casal JI (2008) Proteome analysis of membrane fractions in colorectal carcinomas by using 2D-DIGE saturation labeling. J Proteome Res 7(10):4247–4255. doi:10.1021/pr800152u

    PubMed  CAS  Google Scholar 

  45. van Deursen J, Boer J, Kasper L, Grosveld G (1996) G2 arrest and impaired nucleocytoplasmic transport in mouse embryos lacking the proto-oncogene CAN/Nup214. EMBO J 15(20):5574–5583

    PubMed Central  PubMed  Google Scholar 

  46. Bernad R, Engelsma D, Sanderson H, Pickersgill H, Fornerod M (2006) Nup214-Nup88 nucleoporin subcomplex is required for CRM1-mediated 60S preribosomal nuclear export. J Biol Chem 281(28):19378–19386. doi:10.1074/jbc.M512585200

    PubMed  CAS  Google Scholar 

  47. Hutten S, Kehlenbach RH (2006) Nup214 is required for CRM1-dependent nuclear protein export in vivo. Mol Cell Biol 26(18):6772–6785. doi:10.1128/MCB.00342-06

    PubMed Central  PubMed  CAS  Google Scholar 

  48. Fornerod M, van Deursen J, van Baal S, Reynolds A, Davis D, Murti KG, Fransen J, Grosveld G (1997) The human homologue of yeast CRM1 is in a dynamic subcomplex with CAN/Nup214 and a novel nuclear pore component Nup88. EMBO J 16(4):807–816. doi:10.1093/emboj/16.4.807

    PubMed Central  PubMed  CAS  Google Scholar 

  49. von Lindern M, Fornerod M, van Baal S, Jaegle M, de Wit T, Buijs A, Grosveld G (1992) The translocation (6;9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA. Mol Cell Biol 12(4):1687–1697

    Google Scholar 

  50. von Lindern M, van Baal S, Wiegant J, Raap A, Hagemeijer A, Grosveld G (1992) Can, a putative oncogene associated with myeloid leukemogenesis, may be activated by fusion of its 3′ half to different genes: characterization of the set gene. Mol Cell Biol 12(8):3346–3355

    Google Scholar 

  51. Privette Vinnedge LM, Kappes F, Nassar N, Wells SI (2013) Stacking the DEK: from chromatin topology to cancer stem cells. Cell Cycle 12(1):51–66. doi:10.4161/cc.23121

    PubMed Central  PubMed  Google Scholar 

  52. Fornerod M, Boer J, van Baal S, Jaegle M, von Lindern M, Murti KG, Davis D, Bonten J, Buijs A, Grosveld G (1995) Relocation of the carboxyterminal part of CAN from the nuclear envelope to the nucleus as a result of leukemia-specific chromosome rearrangements. Oncogene 10(9):1739–1748

    PubMed  CAS  Google Scholar 

  53. Van Vlierberghe P, van Grotel M, Tchinda J, Lee C, Beverloo HB, van der Spek PJ, Stubbs A, Cools J, Nagata K, Fornerod M, Buijs-Gladdines J, Horstmann M, van Wering ER, Soulier J, Pieters R, Meijerink JP (2008) The recurrent SET-NUP214 fusion as a new HOXA activation mechanism in pediatric T-cell acute lymphoblastic leukemia. Blood 111(9):4668–4680. doi:10.1182/blood-2007-09-111872

    PubMed Central  PubMed  Google Scholar 

  54. Ageberg M, Drott K, Olofsson T, Gullberg U, Lindmark A (2008) Identification of a novel and myeloid specific role of the leukemia-associated fusion protein DEK-NUP214 leading to increased protein synthesis. Genes Chromosomes Cancer 47(4):276–287. doi:10.1002/gcc.20531

    PubMed  CAS  Google Scholar 

  55. Saito S, Miyaji-Yamaguchi M, Nagata K (2004) Aberrant intracellular localization of SET-CAN fusion protein, associated with a leukemia, disorganizes nuclear export. Int J Cancer 111(4):501–507. doi:10.1002/ijc.20296

    PubMed  CAS  Google Scholar 

  56. Fornerod M, Boer J, van Baal S, Morreau H, Grosveld G (1996) Interaction of cellular proteins with the leukemia specific fusion proteins DEK-CAN and SET-CAN and their normal counterpart, the nucleoporin CAN. Oncogene 13(8):1801–1808

    PubMed  CAS  Google Scholar 

  57. Graux C, Cools J, Melotte C, Quentmeier H, Ferrando A, Levine R, Vermeesch JR, Stul M, Dutta B, Boeckx N, Bosly A, Heimann P, Uyttebroeck A, Mentens N, Somers R, MacLeod RA, Drexler HG, Look AT, Gilliland DG, Michaux L, Vandenberghe P, Wlodarska I, Marynen P, Hagemeijer A (2004) Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet 36(10):1084–1089. doi:10.1038/ng1425

    PubMed  CAS  Google Scholar 

  58. De Braekeleer E, Douet-Guilbert N, Rowe D, Bown N, Morel F, Berthou C, Ferec C, De Braekeleer M (2011) ABL1 fusion genes in hematological malignancies: a review. Eur J Haematol 86(5):361–371. doi:10.1111/j.1600-0609.2011.01586.x

    PubMed  Google Scholar 

  59. De Keersmaecker K, Rocnik JL, Bernad R, Lee BH, Leeman D, Gielen O, Verachtert H, Folens C, Munck S, Marynen P, Fornerod M, Gilliland DG, Cools J (2008) Kinase activation and transformation by NUP214-ABL1 is dependent on the context of the nuclear pore. Mol Cell 31(1):134–142. doi:10.1016/j.molcel.2008.05.005

    PubMed  Google Scholar 

  60. Gorello P, La Starza R, Di Giacomo D, Messina M, Puzzolo MC, Crescenzi B, Santoro A, Chiaretti S, Mecucci C (2010) SQSTM1-NUP214: a new gene fusion in adult T-cell acute lymphoblastic leukemia. Haematologica 95(12):2161–2163. doi:10.3324/haematol.2010.029769

    PubMed Central  PubMed  CAS  Google Scholar 

  61. Duran A, Linares JF, Galvez AS, Wikenheiser K, Flores JM, Diaz-Meco MT, Moscat J (2008) The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis. Cancer Cell 13(4):343–354. doi:10.1016/j.ccr.2008.02.001

    PubMed  CAS  Google Scholar 

  62. Hiruma Y, Honjo T, Jelinek DF, Windle JJ, Shin J, Roodman GD, Kurihara N (2009) Increased signaling through p62 in the marrow microenvironment increases myeloma cell growth and osteoclast formation. Blood 113(20):4894–4902. doi:10.1182/blood-2008-08-173948

    PubMed Central  PubMed  CAS  Google Scholar 

  63. Martin P, Diaz-Meco MT, Moscat J (2006) The signaling adapter p62 is an important mediator of T helper 2 cell function and allergic airway inflammation. EMBO J 25(15):3524–3533. doi:10.1038/sj.emboj.7601250

    PubMed Central  PubMed  CAS  Google Scholar 

  64. Pursiheimo JP, Rantanen K, Heikkinen PT, Johansen T, Jaakkola PM (2009) Hypoxia-activated autophagy accelerates degradation of SQSTM1/p62. Oncogene 28(3):334–344. doi:10.1038/onc.2008.392

    PubMed  CAS  Google Scholar 

  65. Rodriguez A, Duran A, Selloum M, Champy MF, Diez-Guerra FJ, Flores JM, Serrano M, Auwerx J, Diaz-Meco MT, Moscat J (2006) Mature-onset obesity and insulin resistance in mice deficient in the signaling adapter p62. Cell Metab 3(3):211–222. doi:10.1016/j.cmet.2006.01.011

    PubMed  CAS  Google Scholar 

  66. Wooten MW, Geetha T, Seibenhener ML, Babu JR, Diaz-Meco MT, Moscat J (2005) The p62 scaffold regulates nerve growth factor-induced NF-kappaB activation by influencing TRAF6 polyubiquitination. J Biol Chem 280(42):35625–35629. doi:10.1074/jbc.C500237200

    PubMed  CAS  Google Scholar 

  67. Seibenhener ML, Babu JR, Geetha T, Wong HC, Krishna NR, Wooten MW (2004) Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol Cell Biol 24(18):8055–8068. doi:10.1128/MCB.24.18.8055-8068.2004

    PubMed Central  PubMed  CAS  Google Scholar 

  68. Nowak NJ, Sait SN, Zeidan A, Deeb G, Gaile D, Liu S, Ford L, Wallace PK, Wang ES, Wetzler M (2010) Recurrent deletion of 9q34 in adult normal karyotype precursor B-cell acute lymphoblastic leukemia. Cancer Genet Cytogenet 199(1):15–20. doi:10.1016/j.cancergencyto.2010.01.014

    PubMed Central  PubMed  CAS  Google Scholar 

  69. Bernad R, van der Velde H, Fornerod M, Pickersgill H (2004) Nup358/RanBP2 attaches to the nuclear pore complex via association with Nup88 and Nup214/CAN and plays a supporting role in CRM1-mediated nuclear protein export. Mol Cell Biol 24(6):2373–2384

    PubMed Central  PubMed  CAS  Google Scholar 

  70. Forler D, Rabut G, Ciccarelli FD, Herold A, Kocher T, Niggeweg R, Bork P, Ellenberg J, Izaurralde E (2004) RanBP2/Nup358 provides a major binding site for NXF1-p15 dimers at the nuclear pore complex and functions in nuclear mRNA export. Mol Cell Biol 24(3):1155–1167

    PubMed Central  PubMed  CAS  Google Scholar 

  71. Hutten S, Walde S, Spillner C, Hauber J, Kehlenbach RH (2009) The nuclear pore component Nup358 promotes transportin-dependent nuclear import. J Cell Sci 122(Pt 8):1100–1110. doi:10.1242/jcs.040154

    PubMed  CAS  Google Scholar 

  72. Matunis MJ, Wu J, Blobel G (1998) SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. J Cell Biol 140(3):499–509

    PubMed Central  PubMed  CAS  Google Scholar 

  73. Pichler A, Gast A, Seeler JS, Dejean A, Melchior F (2002) The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108(1):109–120

    PubMed  CAS  Google Scholar 

  74. Reverter D, Lima CD (2005) Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature 435(7042):687–692. doi:10.1038/nature03588

    PubMed Central  PubMed  CAS  Google Scholar 

  75. Wu J, Matunis MJ, Kraemer D, Blobel G, Coutavas E (1995) Nup358, a cytoplasmically exposed nucleoporin with peptide repeats, Ran-GTP binding sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region. J Biol Chem 270(23):14209–14213

    PubMed  CAS  Google Scholar 

  76. Hamada M, Haeger A, Jeganathan KB, van Ree JH, Malureanu L, Walde S, Joseph J, Kehlenbach RH, van Deursen JM (2011) Ran-dependent docking of importin-beta to RanBP2/Nup358 filaments is essential for protein import and cell viability. J Cell Biol 194(4):597–612. doi:10.1083/jcb.201102018

    PubMed Central  PubMed  CAS  Google Scholar 

  77. Salina D, Enarson P, Rattner JB, Burke B (2003) Nup358 integrates nuclear envelope breakdown with kinetochore assembly. J Cell Biol 162(6):991–1001. doi:10.1083/jcb.200304080

    PubMed Central  PubMed  CAS  Google Scholar 

  78. Gervais C, Dano L, Perrusson N, Helias C, Jeandidier E, Galoisy AC, Ittel A, Herbrecht R, Bilger K, Mauvieux L (2013) A translocation t(2;8)(q12;p11) fuses FGFR1 to a novel partner gene, RANBP2/NUP358, in a myeloproliferative/myelodysplastic neoplasm. Leukemia 27(5):1186–1188. doi:10.1038/leu.2012.286

    PubMed  CAS  Google Scholar 

  79. Ma Z, Hill DA, Collins MH, Morris SW, Sumegi J, Zhou M, Zuppan C, Bridge JA (2003) Fusion of ALK to the Ran-binding protein 2 (RANBP2) gene in inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 37(1):98–105. doi:10.1002/gcc.10177

    PubMed  CAS  Google Scholar 

  80. Chen ST, Lee JC (2008) An inflammatory myofibroblastic tumor in liver with ALK and RANBP2 gene rearrangement: combination of distinct morphologic, immunohistochemical, and genetic features. Hum Pathol 39(12):1854–1858. doi:10.1016/j.humpath.2008.04.016

    PubMed  CAS  Google Scholar 

  81. Patel AS, Murphy KM, Hawkins AL, Cohen JS, Long PP, Perlman EJ, Griffin CA (2007) RANBP2 and CLTC are involved in ALK rearrangements in inflammatory myofibroblastic tumors. Cancer Genet Cytogenet 176(2):107–114. doi:10.1016/j.cancergencyto.2007.04.004

    PubMed  CAS  Google Scholar 

  82. Gylfe AE, Kondelin J, Turunen M, Ristolainen H, Katainen R, Pitkanen E, Kaasinen E, Rantanen V, Tanskanen T, Varjosalo M, Lehtonen H, Palin K, Taipale M, Taipale J, Renkonen-Sinisalo L, Jarvinen H, Bohm J, Mecklin JP, Ristimaki A, Kilpivaara O, Tuupanen S, Karhu A, Vahteristo P, Aaltonen LA (2013) Identification of candidate oncogenes in human colorectal cancers with microsatellite instability. Gastroenterology. doi:10.1053/j.gastro.2013.05.015

    PubMed  Google Scholar 

  83. Dawlaty MM, Malureanu L, Jeganathan KB, Kao E, Sustmann C, Tahk S, Shuai K, Grosschedl R, van Deursen JM (2008) Resolution of sister centromeres requires RanBP2-mediated SUMOylation of topoisomerase IIalpha. Cell 133(1):103–115. doi:10.1016/j.cell.2008.01.045

    PubMed Central  PubMed  CAS  Google Scholar 

  84. Culjkovic-Kraljacic B, Baguet A, Volpon L, Amri A, Borden KL (2012) The oncogene eIF4E reprograms the nuclear pore complex to promote mRNA export and oncogenic transformation. Cell Rep 2(2):207–215. doi:10.1016/j.celrep.2012.07.007

    PubMed Central  PubMed  CAS  Google Scholar 

  85. Griffis ER, Xu S, Powers MA (2003) Nup98 localizes to both nuclear and cytoplasmic sides of the nuclear pore and binds to two distinct nucleoporin subcomplexes. Mol Biol Cell 14(2):600–610. doi:10.1091/mbc.E02-09-0582

    PubMed Central  PubMed  CAS  Google Scholar 

  86. Radu A, Moore MS, Blobel G (1995) The peptide repeat domain of nucleoporin Nup98 functions as a docking site in transport across the nuclear pore complex. Cell 81(2):215–222

    PubMed  CAS  Google Scholar 

  87. Griffis ER, Altan N, Lippincott-Schwartz J, Powers MA (2002) Nup98 is a mobile nucleoporin with transcription-dependent dynamics. Mol Biol Cell 13(4):1282–1297. doi:10.1091/mbc.01-11-0538

    PubMed Central  PubMed  CAS  Google Scholar 

  88. Griffis ER, Craige B, Dimaano C, Ullman KS, Powers MA (2004) Distinct functional domains within nucleoporins Nup153 and Nup98 mediate transcription-dependent mobility. Mol Biol Cell 15(4):1991–2002. doi:10.1091/mbc.E03-10-0743

    PubMed Central  PubMed  CAS  Google Scholar 

  89. Capelson M, Liang Y, Schulte R, Mair W, Wagner U, Hetzer MW (2010) Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell 140(3):372–383. doi:10.1016/j.cell.2009.12.054

    PubMed Central  PubMed  CAS  Google Scholar 

  90. Liang Y, Franks TM, Marchetto MC, Gage FH, Hetzer MW (2013) Dynamic association of NUP98 with the human genome. PLoS Genet 9(2):e1003308. doi:10.1371/journal.pgen.1003308

    PubMed Central  PubMed  CAS  Google Scholar 

  91. Iwamoto M, Asakawa H, Hiraoka Y, Haraguchi T (2010) Nucleoporin Nup98: a gatekeeper in the eukaryotic kingdoms. Genes Cells 15(7):661–669. doi:10.1111/j.1365-2443.2010.01415.x

    PubMed  CAS  Google Scholar 

  92. Borrow J, Shearman AM, Stanton VP Jr, Becher R, Collins T, Williams AJ, Dube I, Katz F, Kwong YL, Morris C, Ohyashiki K, Toyama K, Rowley J, Housman DE (1996) The t(7;11)(p15;p15) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP98 and class I homeoprotein HOXA9. Nat Genet 12(2):159–167. doi:10.1038/ng0296-159

    PubMed  CAS  Google Scholar 

  93. Nakamura T, Largaespada DA, Lee MP, Johnson LA, Ohyashiki K, Toyama K, Chen SJ, Willman CL, Chen IM, Feinberg AP, Jenkins NA, Copeland NG, Shaughnessy JD Jr (1996) Fusion of the nucleoporin gene NUP98 to HOXA9 by the chromosome translocation t(7;11)(p15;p15) in human myeloid leukaemia. Nat Genet 12(2):154–158. doi:10.1038/ng0296-154

    PubMed  CAS  Google Scholar 

  94. Kasper LH, Brindle PK, Schnabel CA, Pritchard CE, Cleary ML, van Deursen JM (1999) CREB binding protein interacts with nucleoporin-specific FG repeats that activate transcription and mediate NUP98-HOXA9 oncogenicity. Mol Cell Biol 19(1):764–776

    PubMed Central  PubMed  CAS  Google Scholar 

  95. Gorello P, Nofrini V, Brandimarte L, Pierini V, Crescenzi B, Nozza F, Daniele G, Storlazzi CT, Di Giacomo D, Matteucci C, La Starza R, Mecucci C (2013) Inv(11)(p15q22)/NUP98-DDX10 fusion and isoforms in a new case of de novo acute myeloid leukemia. Cancer Genet 206(3):92–96. doi:10.1016/j.cancergen.2013.02.001

    PubMed  CAS  Google Scholar 

  96. Lisboa S, Cerveira N, Bizarro S, Correia C, Vieira J, Torres L, Mariz JM, Teixeira MR (2013) POU1F1 is a novel fusion partner of NUP98 in acute myeloid leukemia with t(3;11)(p11;p15). Mol Cancer 12:5. doi:10.1186/1476-4598-12-5

    PubMed Central  PubMed  CAS  Google Scholar 

  97. Soler G, Kaltenbach S, Dobbelstein S, Broccardo C, Radford I, Mozziconacci MJ, Bernard OA, Penard-Lacronique V, Delabesse E, Romana SP (2013) Identification of GSX2 and AF10 as NUP98 partner genes in myeloid malignancies. Blood Cancer J 3:e124. doi:10.1038/bcj.2013.20

    PubMed Central  PubMed  CAS  Google Scholar 

  98. Shah N, Sukumar S (2010) The Hox genes and their roles in oncogenesis. Nat Rev Cancer 10(5):361–371. doi:10.1038/nrc2826

    PubMed  CAS  Google Scholar 

  99. Hussey DJ, Dobrovic A (2002) Recurrent coiled-coil motifs in NUP98 fusion partners provide a clue to leukemogenesis. Blood 99(3):1097–1098

    PubMed  CAS  Google Scholar 

  100. Wang GG, Cai L, Pasillas MP, Kamps MP (2007) NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis. Nat Cell Biol 9(7):804–812. doi:10.1038/ncb1608

    PubMed  CAS  Google Scholar 

  101. Wang GG, Song J, Wang Z, Dormann HL, Casadio F, Li H, Luo JL, Patel DJ, Allis CD (2009) Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger. Nature 459(7248):847–851. doi:10.1038/nature08036

    PubMed Central  PubMed  CAS  Google Scholar 

  102. Singer S, Zhao R, Barsotti AM, Ouwehand A, Fazollahi M, Coutavas E, Breuhahn K, Neumann O, Longerich T, Pusterla T, Powers MA, Giles KM, Leedman PJ, Hess J, Grunwald D, Bussemaker HJ, Singer RH, Schirmacher P, Prives C (2012) Nuclear pore component Nup98 is a potential tumor suppressor and regulates posttranscriptional expression of select p53 target genes. Mol Cell 48(5):799–810. doi:10.1016/j.molcel.2012.09.020

    PubMed Central  PubMed  CAS  Google Scholar 

  103. Uv AE, Roth P, Xylourgidis N, Wickberg A, Cantera R, Samakovlis C (2000) members only encodes a Drosophila nucleoporin required for rel protein import and immune response activation. Genes Dev 14(15):1945–1957

    PubMed Central  PubMed  CAS  Google Scholar 

  104. Sabri N, Roth P, Xylourgidis N, Sadeghifar F, Adler J, Samakovlis C (2007) Distinct functions of the Drosophila Nup153 and Nup214 FG domains in nuclear protein transport. J Cell Biol 178(4):557–565. doi:10.1083/jcb.200612135

    PubMed Central  PubMed  CAS  Google Scholar 

  105. Xylourgidis N, Roth P, Sabri N, Tsarouhas V, Samakovlis C (2006) The nucleoporin Nup214 sequesters CRM1 at the nuclear rim and modulates NFkappaB activation in Drosophila. J Cell Sci 119(Pt 21):4409–4419. doi:10.1242/jcs.03201

    PubMed  CAS  Google Scholar 

  106. Martinez N, Alonso A, Moragues MD, Ponton J, Schneider J (1999) The nuclear pore complex protein Nup88 is overexpressed in tumor cells. Cancer Res 59(21):5408–5411

    PubMed  CAS  Google Scholar 

  107. Gould VE, Martinez N, Orucevic A, Schneider J, Alonso A (2000) A novel, nuclear pore-associated, widely distributed molecule overexpressed in oncogenesis and development. Am J Pathol 157(5):1605–1613. doi:10.1016/S0002-9440(10)64798-0

    PubMed Central  PubMed  CAS  Google Scholar 

  108. Gould VE, Orucevic A, Zentgraf H, Gattuso P, Martinez N, Alonso A (2002) Nup88 (karyoporin) in human malignant neoplasms and dysplasias: correlations of immunostaining of tissue sections, cytologic smears, and immunoblot analysis. Hum Pathol 33(5):536–544

    PubMed  CAS  Google Scholar 

  109. Agudo D, Gomez-Esquer F, Martinez-Arribas F, Nunez-Villar MJ, Pollan M, Schneider J (2004) Nup88 mRNA overexpression is associated with high aggressiveness of breast cancer. Int J Cancer 109(5):717–720. doi:10.1002/ijc.20034

    PubMed  CAS  Google Scholar 

  110. Hernandez P, Sole X, Valls J, Moreno V, Capella G, Urruticoechea A, Pujana MA (2007) Integrative analysis of a cancer somatic mutome. Mol Cancer 6:13. doi:10.1186/1476-4598-6-13

    PubMed Central  PubMed  Google Scholar 

  111. Kinoshita Y, Kalir T, Rahaman J, Dottino P, Kohtz DS (2012) Alterations in nuclear pore architecture allow cancer cell entry into or exit from drug-resistant dormancy. Am J Pathol 180(1):375–389. doi:10.1016/j.ajpath.2011.09.024

    PubMed Central  PubMed  CAS  Google Scholar 

  112. Brustmann H, Hager M (2009) Nucleoporin 88 expression in normal and neoplastic squamous epithelia of the uterine cervix. Ann Diagn Pathol 13(5):303–307. doi:10.1016/j.anndiagpath.2009.05.005

    PubMed  Google Scholar 

  113. Zhao ZR, Zhang LJ, Wang YY, Li F, Wang MW, Sun XF (2012) Increased serum level of Nup88 protein is associated with the development of colorectal cancer. Med Oncol 29(3):1789–1795. doi:10.1007/s12032-011-0047-1

    PubMed  CAS  Google Scholar 

  114. Emterling A, Skoglund J, Arbman G, Schneider J, Evertsson S, Carstensen J, Zhang H, Sun XF (2003) Clinicopathological significance of Nup88 expression in patients with colorectal cancer. Oncology 64(4):361–369. doi:70294

    PubMed  Google Scholar 

  115. Knoess M, Kurz AK, Goreva O, Bektas N, Breuhahn K, Odenthal M, Schirmacher P, Dienes HP, Bock CT, Zentgraf H, zur Hausen A (2006) Nucleoporin 88 expression in hepatitis B and C virus-related liver diseases. World J Gastroenterol 12(36):5870–5874

    PubMed  CAS  Google Scholar 

  116. Zhang ZY, Zhao ZR, Jiang L, Li JC, Gao YM, Cui DS, Wang CJ, Schneider J, Wang MW, Sun XF (2007) Nup88 expression in normal mucosa, adenoma, primary adenocarcinoma and lymph node metastasis in the colorectum. Tumour Biol 28(2):93–99. doi:10.1159/000099154

    PubMed  Google Scholar 

  117. Takahashi N, van Kilsdonk JW, Ostendorf B, Smeets R, Bruggeman SW, Alonso A, van de Loo F, Schneider M, van den Berg WB, Swart GW (2008) Tumor marker nucleoporin 88 kDa regulates nucleocytoplasmic transport of NF-kappaB. Biochem Biophys Res Commun 374(3):424–430. doi:10.1016/j.bbrc.2008.06.128

    PubMed  CAS  Google Scholar 

  118. Kau TR, Way JC, Silver PA (2004) Nuclear transport and cancer: from mechanism to intervention. Nat Rev Cancer 4(2):106–117. doi:10.1038/nrc1274

    PubMed  CAS  Google Scholar 

  119. Culjkovic-Kraljacic B, Borden KL (2013) Aiding and abetting cancer: mRNA export and the nuclear pore. Trends Cell Biol 23(7):328–335. doi:10.1016/j.tcb.2013.03.004

    PubMed  CAS  Google Scholar 

  120. Pritchard CE, Fornerod M, Kasper LH, van Deursen JM (1999) RAE1 is a shuttling mRNA export factor that binds to a GLEBS-like NUP98 motif at the nuclear pore complex through multiple domains. J Cell Biol 145(2):237–254

    PubMed Central  PubMed  CAS  Google Scholar 

  121. Sitterlin D (2004) Characterization of the Drosophila Rae1 protein as a G1 phase regulator of the cell cycle. Gene 326:107–116

    PubMed  CAS  Google Scholar 

  122. Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, Kuo WL, Lapuk A, Neve RM, Qian Z, Ryder T, Chen F, Feiler H, Tokuyasu T, Kingsley C, Dairkee S, Meng Z, Chew K, Pinkel D, Jain A, Ljung BM, Esserman L, Albertson DG, Waldman FM, Gray JW (2006) Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10(6):529–541. doi:10.1016/j.ccr.2006.10.009

    PubMed  CAS  Google Scholar 

  123. Dominguez-Sanchez MS, Saez C, Japon MA, Aguilera A, Luna R (2011) Differential expression of THOC1 and ALY mRNP biogenesis/export factors in human cancers. BMC Cancer 11:77. doi:10.1186/1471-2407-11-77

    PubMed Central  PubMed  CAS  Google Scholar 

  124. Guo S, Hakimi MA, Baillat D, Chen X, Farber MJ, Klein-Szanto AJ, Cooch NS, Godwin AK, Shiekhattar R (2005) Linking transcriptional elongation and messenger RNA export to metastatic breast cancers. Cancer Res 65(8):3011–3016. doi:10.1158/0008-5472.CAN-04-3624

    PubMed  CAS  Google Scholar 

  125. Guo S, Liu M, Godwin AK (2012) Transcriptional regulation of hTREX84 in human cancer cells. PLoS One 7(8):e43610. doi:10.1371/journal.pone.0043610

    PubMed Central  PubMed  CAS  Google Scholar 

  126. Yang J, Li Y, Khoury T, Alrawi S, Goodrich DW, Tan D (2008) Relationships of hHpr1/p84/Thoc1 expression to clinicopathologic characteristics and prognosis in non-small cell lung cancer. Ann Clin Lab Sci 38(2):105–112

    PubMed Central  PubMed  CAS  Google Scholar 

  127. Saito Y, Kasamatsu A, Yamamoto A, Shimizu T, Yokoe H, Sakamoto Y, Ogawara K, Shiiba M, Tanzawa H, Uzawa K (2013) ALY as a potential contributor to metastasis in human oral squamous cell carcinoma. J Cancer Res Clin Oncol 139(4):585–594. doi:10.1007/s00432-012-1361-5

    PubMed  CAS  Google Scholar 

  128. Fujimura S, Xing Y, Takeya M, Yamashita Y, Ohshima K, Kuwahara K, Sakaguchi N (2005) Increased expression of germinal center-associated nuclear protein RNA-primase is associated with lymphomagenesis. Cancer Res 65(13):5925–5934. doi:10.1158/0008-5472.CAN-04-3259

    PubMed  CAS  Google Scholar 

  129. Culjkovic B, Topisirovic I, Skrabanek L, Ruiz-Gutierrez M, Borden KL (2006) eIF4E is a central node of an RNA regulon that governs cellular proliferation. J Cell Biol 175(3):415–426. doi:10.1083/jcb.200607020

    PubMed Central  PubMed  CAS  Google Scholar 

  130. Borden KL, Culjkovic-Kraljacic B (2010) Ribavirin as an anti-cancer therapy: acute myeloid leukemia and beyond? Leuk Lymphoma 51(10):1805–1815. doi:10.3109/10428194.2010.496506

    PubMed Central  PubMed  CAS  Google Scholar 

  131. Huang WY, Yue L, Qiu WS, Wang LW, Zhou XH, Sun YJ (2009) Prognostic value of CRM1 in pancreas cancer. Clin Invest Med 32(6):E315

    PubMed  Google Scholar 

  132. Shen A, Wang Y, Zhao Y, Zou L, Sun L, Cheng C (2009) Expression of CRM1 in human gliomas and its significance in p27 expression and clinical prognosis. Neurosurgery 65(1):153–159. doi:10.1227/01.NEU.0000348550.47441.4B, discussion 159–160

    PubMed  Google Scholar 

  133. Turner JG, Dawson J, Sullivan DM (2012) Nuclear export of proteins and drug resistance in cancer. Biochem Pharmacol 83(8):1021–1032. doi:10.1016/j.bcp.2011.12.016

    PubMed  CAS  Google Scholar 

  134. van der Watt PJ, Maske CP, Hendricks DT, Parker MI, Denny L, Govender D, Birrer MJ, Leaner VD (2009) The Karyopherin proteins, Crm1 and Karyopherin beta1, are overexpressed in cervical cancer and are critical for cancer cell survival and proliferation. Int J Cancer 124(8):1829–1840. doi:10.1002/ijc.24146

    PubMed  Google Scholar 

  135. Cohen S, Etingov I, Pante N (2012) Effect of viral infection on the nuclear envelope and nuclear pore complex. Int Rev Cell Mol Biol 299:117–159. doi:10.1016/B978-0-12-394310-1.00003-5

    PubMed  CAS  Google Scholar 

  136. Kobiler O, Drayman N, Butin-Israeli V, Oppenheim A (2012) Virus strategies for passing the nuclear envelope barrier. Nucleus 3(6):526–539. doi:10.4161/nucl.21979

    PubMed Central  PubMed  Google Scholar 

  137. Kuss SK, Mata MA, Zhang L, Fontoura BM (2013) Nuclear imprisonment: viral strategies to arrest host mRNA nuclear export. Viruses 5(7):1824–1849. doi:10.3390/v5071824

    PubMed Central  PubMed  CAS  Google Scholar 

  138. Gustin KE, Sarnow P (2001) Effects of poliovirus infection on nucleo-cytoplasmic trafficking and nuclear pore complex composition. EMBO J 20(1–2):240–249. doi:10.1093/emboj/20.1.240

    PubMed Central  PubMed  CAS  Google Scholar 

  139. Gustin KE, Sarnow P (2002) Inhibition of nuclear import and alteration of nuclear pore complex composition by rhinovirus. J Virol 76(17):8787–8796

    PubMed Central  PubMed  CAS  Google Scholar 

  140. Park N, Katikaneni P, Skern T, Gustin KE (2008) Differential targeting of nuclear pore complex proteins in poliovirus-infected cells. J Virol 82(4):1647–1655. doi:10.1128/JVI.01670-07

    PubMed Central  PubMed  CAS  Google Scholar 

  141. Ghildyal R, Jordan B, Li D, Dagher H, Bardin PG, Gern JE, Jans DA (2009) Rhinovirus 3C protease can localize in the nucleus and alter active and passive nucleocytoplasmic transport. J Virol 83(14):7349–7352. doi:10.1128/JVI.01748-08

    PubMed Central  PubMed  CAS  Google Scholar 

  142. Bardina MV, Lidsky PV, Sheval EV, Fominykh KV, van Kuppeveld FJ, Polyakov VY, Agol VI (2009) Mengovirus-induced rearrangement of the nuclear pore complex: hijacking cellular phosphorylation machinery. J Virol 83(7):3150–3161. doi:10.1128/JVI.01456-08

    PubMed Central  PubMed  CAS  Google Scholar 

  143. Porter FW, Palmenberg AC (2009) Leader-induced phosphorylation of nucleoporins correlates with nuclear trafficking inhibition by cardioviruses. J Virol 83(4):1941–1951. doi:10.1128/JVI.01752-08

    PubMed Central  PubMed  CAS  Google Scholar 

  144. Ricour C, Delhaye S, Hato SV, Olenyik TD, Michel B, van Kuppeveld FJ, Gustin KE, Michiels T (2009) Inhibition of mRNA export and dimerization of interferon regulatory factor 3 by Theiler’s virus leader protein. J Gen Virol 90(Pt 1):177–186. doi:10.1099/vir.0.005678-0

    PubMed Central  PubMed  CAS  Google Scholar 

  145. Lidsky PV, Hato S, Bardina MV, Aminev AG, Palmenberg AC, Sheval EV, Polyakov VY, van Kuppeveld FJ, Agol VI (2006) Nucleocytoplasmic traffic disorder induced by cardioviruses. J Virol 80(6):2705–2717. doi:10.1128/JVI.80.6.2705-2717.2006

    PubMed Central  PubMed  CAS  Google Scholar 

  146. Chang CW, Lee CP, Huang YH, Yang PW, Wang JT, Chen MR (2012) Epstein-Barr virus protein kinase BGLF4 targets the nucleus through interaction with nucleoporins. J Virol 86(15):8072–8085. doi:10.1128/JVI.01058-12

    PubMed Central  PubMed  CAS  Google Scholar 

  147. Strunze S, Engelke MF, Wang IH, Puntener D, Boucke K, Schleich S, Way M, Schoenenberger P, Burckhardt CJ, Greber UF (2011) Kinesin-1-mediated capsid disassembly and disruption of the nuclear pore complex promote virus infection. Cell Host Microbe 10(3):210–223. doi:10.1016/j.chom.2011.08.010

    PubMed  CAS  Google Scholar 

  148. Copeland AM, Newcomb WW, Brown JC (2009) Herpes simplex virus replication: roles of viral proteins and nucleoporins in capsid-nucleus attachment. J Virol 83(4):1660–1668. doi:10.1128/JVI.01139-08

    PubMed Central  PubMed  CAS  Google Scholar 

  149. Pasdeloup D, Blondel D, Isidro AL, Rixon FJ (2009) Herpesvirus capsid association with the nuclear pore complex and viral DNA release involve the nucleoporin CAN/Nup214 and the capsid protein pUL25. J Virol 83(13):6610–6623. doi:10.1128/JVI.02655-08

    PubMed Central  PubMed  CAS  Google Scholar 

  150. Chakraborty P, Seemann J, Mishra RK, Wei JH, Weil L, Nussenzveig DR, Heiber J, Barber GN, Dasso M, Fontoura BM (2009) Vesicular stomatitis virus inhibits mitotic progression and triggers cell death. EMBO Rep 10(10):1154–1160. doi:10.1038/embor.2009.179

    PubMed Central  PubMed  CAS  Google Scholar 

  151. Rajani KR, Pettit Kneller EL, McKenzie MO, Horita DA, Chou JW, Lyles DS (2012) Complexes of vesicular stomatitis virus matrix protein with host Rae1 and Nup98 involved in inhibition of host transcription. PLoS Pathog 8(9):e1002929. doi:10.1371/journal.ppat.1002929

    PubMed Central  PubMed  Google Scholar 

  152. Balachandran S, Barber GN (2004) Defective translational control facilitates vesicular stomatitis virus oncolysis. Cancer Cell 5(1):51–65

    PubMed  CAS  Google Scholar 

  153. Barber GN (2005) VSV-tumor selective replication and protein translation. Oncogene 24(52):7710–7719. doi:10.1038/sj.onc.1209042

    PubMed  CAS  Google Scholar 

  154. Satterly N, Tsai PL, van Deursen J, Nussenzveig DR, Wang Y, Faria PA, Levay A, Levy DE, Fontoura BM (2007) Influenza virus targets the mRNA export machinery and the nuclear pore complex. Proc Natl Acad Sci U S A 104(6):1853–1858. doi:10.1073/pnas.0610977104

    PubMed Central  PubMed  CAS  Google Scholar 

  155. Friedrich BM, Dziuba N, Li G, Endsley MA, Murray JL, Ferguson MR (2011) Host factors mediating HIV-1 replication. Virus Res 161(2):101–114. doi:10.1016/j.virusres.2011.08.001

    PubMed  CAS  Google Scholar 

  156. Lever AM, Jeang KT (2011) Insights into cellular factors that regulate HIV-1 replication in human cells. Biochemistry 50(6):920–931. doi:10.1021/bi101805f

    PubMed Central  PubMed  CAS  Google Scholar 

  157. Schaller T, Ocwieja KE, Rasaiyaah J, Price AJ, Brady TL, Roth SL, Hue S, Fletcher AJ, Lee K, KewalRamani VN, Noursadeghi M, Jenner RG, James LC, Bushman FD, Towers GJ (2011) HIV-1 capsid-cyclophilin interactions determine nuclear import pathway, integration targeting and replication efficiency. PLoS Pathog 7(12):e1002439. doi:10.1371/journal.ppat.1002439

    PubMed Central  PubMed  CAS  Google Scholar 

  158. Di Nunzio F, Danckaert A, Fricke T, Perez P, Fernandez J, Perret E, Roux P, Shorte S, Charneau P, Diaz-Griffero F, Arhel NJ (2012) Human nucleoporins promote HIV-1 docking at the nuclear pore, nuclear import and integration. PLoS One 7(9):e46037. doi:10.1371/journal.pone.0046037

    PubMed Central  PubMed  Google Scholar 

  159. Di Nunzio F, Fricke T, Miccio A, Valle-Casuso JC, Perez P, Souque P, Rizzi E, Severgnini M, Mavilio F, Charneau P, Diaz-Griffero F (2013) Nup153 and Nup98 bind the HIV-1 core and contribute to the early steps of HIV-1 replication. Virology 440(1):8–18. doi:10.1016/j.virol.2013.02.008

    PubMed  Google Scholar 

  160. Woodward CL, Prakobwanakit S, Mosessian S, Chow SA (2009) Integrase interacts with nucleoporin NUP153 to mediate the nuclear import of human immunodeficiency virus type 1. J Virol 83(13):6522–6533. doi:10.1128/JVI.02061-08

    PubMed Central  PubMed  CAS  Google Scholar 

  161. Monette A, Ajamian L, Lopez-Lastra M, Mouland AJ (2009) Human immunodeficiency virus type 1 (HIV-1) induces the cytoplasmic retention of heterogeneous nuclear ribonucleoprotein A1 by disrupting nuclear import: implications for HIV-1 gene expression. J Biol Chem 284(45):31350–31362. doi:10.1074/jbc.M109.048736

    PubMed Central  PubMed  CAS  Google Scholar 

  162. Chan EY, Qian WJ, Diamond DL, Liu T, Gritsenko MA, Monroe ME, Camp DG II, Smith RD, Katze MG (2007) Quantitative analysis of human immunodeficiency virus type 1-infected CD4+ cell proteome: dysregulated cell cycle progression and nuclear transport coincide with robust virus production. J Virol 81(14):7571–7583. doi:10.1128/JVI.00288-07

    PubMed Central  PubMed  CAS  Google Scholar 

  163. Chan EY, Sutton JN, Jacobs JM, Bondarenko A, Smith RD, Katze MG (2009) Dynamic host energetics and cytoskeletal proteomes in human immunodeficiency virus type 1-infected human primary CD4 cells: analysis by multiplexed label-free mass spectrometry. J Virol 83(18):9283–9295. doi:10.1128/JVI.00814-09

    PubMed Central  PubMed  CAS  Google Scholar 

  164. Monette A, Pante N, Mouland AJ (2011) HIV-1 remodels the nuclear pore complex. J Cell Biol 193(4):619–631. doi:10.1083/jcb.201008064

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Rout .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Simon, D.N., Rout, M.P. (2014). Cancer and the Nuclear Pore Complex. In: Schirmer, E., de las Heras, J. (eds) Cancer Biology and the Nuclear Envelope. Advances in Experimental Medicine and Biology, vol 773. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8032-8_13

Download citation

Publish with us

Policies and ethics